Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2023, Xu Sun.
|
2 |
+
|
3 |
+
# This program is licensed under the Apache License version 2.
|
4 |
+
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import streamlit as st
|
11 |
+
|
12 |
+
from PIL import Image
|
13 |
+
from lib.glaucoma import GlaucomaModel
|
14 |
+
|
15 |
+
run_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
|
18 |
+
def main():
|
19 |
+
# Wide mode
|
20 |
+
st.set_page_config(layout="wide")
|
21 |
+
|
22 |
+
# Designing the interface
|
23 |
+
st.title("Glaucoma Screening from Retinal Fundus Images")
|
24 |
+
# For newline
|
25 |
+
st.write('\n')
|
26 |
+
# Author info
|
27 |
+
st.write('Developed by X. Sun. Find more info about me: https://pamixsun.github.io')
|
28 |
+
# For newline
|
29 |
+
st.write('\n')
|
30 |
+
# Instructions
|
31 |
+
st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*")
|
32 |
+
# Set the columns
|
33 |
+
cols = st.beta_columns((1, 1))
|
34 |
+
cols[0].subheader("Input image")
|
35 |
+
cols[1].subheader("Class activation map")
|
36 |
+
|
37 |
+
# set the visualization figure
|
38 |
+
fig, ax = plt.subplots()
|
39 |
+
|
40 |
+
# Sidebar
|
41 |
+
# File selection
|
42 |
+
st.sidebar.title("Image selection")
|
43 |
+
# Disabling warning
|
44 |
+
st.set_option('deprecation.showfileUploaderEncoding', False)
|
45 |
+
# Choose your own image
|
46 |
+
uploaded_file = st.sidebar.file_uploader("Upload image", type=['png', 'jpeg', 'jpg'])
|
47 |
+
if uploaded_file is not None:
|
48 |
+
# read the upload image
|
49 |
+
image = Image.open(uploaded_file).convert('RGB')
|
50 |
+
image = np.array(image).astype(np.uint8)
|
51 |
+
# page_idx = 0
|
52 |
+
ax.imshow(image)
|
53 |
+
ax.axis('off')
|
54 |
+
cols[0].pyplot(fig)
|
55 |
+
|
56 |
+
# For newline
|
57 |
+
st.sidebar.write('\n')
|
58 |
+
|
59 |
+
# actions
|
60 |
+
if st.sidebar.button("Analyze image"):
|
61 |
+
|
62 |
+
if uploaded_file is None:
|
63 |
+
st.sidebar.write("Please upload an image")
|
64 |
+
|
65 |
+
else:
|
66 |
+
with st.spinner('Loading model...'):
|
67 |
+
# load model
|
68 |
+
model = GlaucomaModel(device=run_device)
|
69 |
+
|
70 |
+
with st.spinner('Analyzing...'):
|
71 |
+
# Forward the image to the model and get results
|
72 |
+
disease_idx, cam = model.process(image)
|
73 |
+
|
74 |
+
# visualize results
|
75 |
+
# fig, ax = plt.subplots()
|
76 |
+
|
77 |
+
# plot the stitched image
|
78 |
+
ax.imshow(cam)
|
79 |
+
ax.axis('off')
|
80 |
+
cols[1].pyplot(fig)
|
81 |
+
|
82 |
+
# Display JSON
|
83 |
+
st.subheader(" Screening results:")
|
84 |
+
st.write('\n')
|
85 |
+
st.markdown(f"{model.id2label[disease_idx]}")
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
main()
|