File size: 7,140 Bytes
6e32a75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import argparse
import numpy as np
from modules.tokenizers import Tokenizer
from modules.dataloaders import R2DataLoader
from modules.metrics import compute_scores
from modules.optimizers import build_optimizer, build_lr_scheduler
from modules.trainer import Trainer
from modules.loss import compute_loss
from models.r2gen import R2GenModel


def parse_agrs():
    parser = argparse.ArgumentParser()

    # Data input settings
    parser.add_argument('--image_dir', type=str, default='data/mimic_cxr/images/', help='the path to the directory containing the data.')
    parser.add_argument('--ann_path', type=str, default='data/mimic_cxr/annotation.json', help='the path to the directory containing the data.')

    # Data loader settings
    parser.add_argument('--dataset_name', type=str, default='mimic_cxr', choices=['iu_xray', 'mimic_cxr'], help='the dataset to be used.')
    parser.add_argument('--max_seq_length', type=int, default=60, help='the maximum sequence length of the reports.')
    parser.add_argument('--threshold', type=int, default=3, help='the cut off frequency for the words.')
    parser.add_argument('--num_workers', type=int, default=2, help='the number of workers for dataloader.')
    parser.add_argument('--batch_size', type=int, default=16, help='the number of samples for a batch')

    # Model settings (for visual extractor)
    parser.add_argument('--visual_extractor', type=str, default='resnet101', help='the visual extractor to be used.')
    parser.add_argument('--visual_extractor_pretrained', type=bool, default=True, help='whether to load the pretrained visual extractor')

    # Model settings (for Transformer)
    parser.add_argument('--d_model', type=int, default=512, help='the dimension of Transformer.')
    parser.add_argument('--d_ff', type=int, default=512, help='the dimension of FFN.')
    parser.add_argument('--d_vf', type=int, default=2048, help='the dimension of the patch features.')
    parser.add_argument('--num_heads', type=int, default=8, help='the number of heads in Transformer.')
    parser.add_argument('--num_layers', type=int, default=3, help='the number of layers of Transformer.')
    parser.add_argument('--dropout', type=float, default=0.1, help='the dropout rate of Transformer.')
    parser.add_argument('--logit_layers', type=int, default=1, help='the number of the logit layer.')
    parser.add_argument('--bos_idx', type=int, default=0, help='the index of <bos>.')
    parser.add_argument('--eos_idx', type=int, default=0, help='the index of <eos>.')
    parser.add_argument('--pad_idx', type=int, default=0, help='the index of <pad>.')
    parser.add_argument('--use_bn', type=int, default=0, help='whether to use batch normalization.')
    parser.add_argument('--drop_prob_lm', type=float, default=0.5, help='the dropout rate of the output layer.')
    # for Relational Memory
    parser.add_argument('--rm_num_slots', type=int, default=3, help='the number of memory slots.')
    parser.add_argument('--rm_num_heads', type=int, default=8, help='the numebr of heads in rm.')
    parser.add_argument('--rm_d_model', type=int, default=512, help='the dimension of rm.')

    # Sample related
    parser.add_argument('--sample_method', type=str, default='beam_search', help='the sample methods to sample a report.')
    parser.add_argument('--beam_size', type=int, default=3, help='the beam size when beam searching.')
    parser.add_argument('--temperature', type=float, default=1.0, help='the temperature when sampling.')
    parser.add_argument('--sample_n', type=int, default=1, help='the sample number per image.')
    parser.add_argument('--group_size', type=int, default=1, help='the group size.')
    parser.add_argument('--output_logsoftmax', type=int, default=1, help='whether to output the probabilities.')
    parser.add_argument('--decoding_constraint', type=int, default=0, help='whether decoding constraint.')
    parser.add_argument('--block_trigrams', type=int, default=1, help='whether to use block trigrams.')

    # Trainer settings
    parser.add_argument('--n_gpu', type=int, default=1, help='the number of gpus to be used.')
    parser.add_argument('--epochs', type=int, default=100, help='the number of training epochs.')
    parser.add_argument('--save_dir', type=str, default='results/iu_xray', help='the patch to save the models.')
    parser.add_argument('--record_dir', type=str, default='records/', help='the patch to save the results of experiments')
    parser.add_argument('--save_period', type=int, default=1, help='the saving period.')
    parser.add_argument('--monitor_mode', type=str, default='max', choices=['min', 'max'], help='whether to max or min the metric.')
    parser.add_argument('--monitor_metric', type=str, default='BLEU_4', help='the metric to be monitored.')
    parser.add_argument('--early_stop', type=int, default=50, help='the patience of training.')

    # Optimization
    parser.add_argument('--optim', type=str, default='Adam', help='the type of the optimizer.')
    parser.add_argument('--lr_ve', type=float, default=5e-5, help='the learning rate for the visual extractor.')
    parser.add_argument('--lr_ed', type=float, default=1e-4, help='the learning rate for the remaining parameters.')
    parser.add_argument('--weight_decay', type=float, default=5e-5, help='the weight decay.')
    parser.add_argument('--amsgrad', type=bool, default=True, help='.')

    # Learning Rate Scheduler
    parser.add_argument('--lr_scheduler', type=str, default='StepLR', help='the type of the learning rate scheduler.')
    parser.add_argument('--step_size', type=int, default=50, help='the step size of the learning rate scheduler.')
    parser.add_argument('--gamma', type=float, default=0.1, help='the gamma of the learning rate scheduler.')

    # Others
    parser.add_argument('--seed', type=int, default=9233, help='.')
    parser.add_argument('--resume', type=str, help='whether to resume the training from existing checkpoints.')

    args = parser.parse_args()
    return args


def main():
    # parse arguments
    args = parse_agrs()

    # fix random seeds
    torch.manual_seed(args.seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    np.random.seed(args.seed)

    # create tokenizer
    tokenizer = Tokenizer(args)

    # create data loader
    train_dataloader = R2DataLoader(args, tokenizer, split='train', shuffle=True)
    val_dataloader = R2DataLoader(args, tokenizer, split='val', shuffle=False)
    test_dataloader = R2DataLoader(args, tokenizer, split='test', shuffle=False)

    # build model architecture
    model = R2GenModel(args, tokenizer)

    # get function handles of loss and metrics
    criterion = compute_loss
    metrics = compute_scores

    # build optimizer, learning rate scheduler
    optimizer = build_optimizer(args, model)
    lr_scheduler = build_lr_scheduler(args, optimizer)

    # build trainer and start to train
    trainer = Trainer(model, criterion, metrics, optimizer, args, lr_scheduler, train_dataloader, val_dataloader, test_dataloader)
    trainer.train()


if __name__ == '__main__':
    main()