Spaces:
Running
Running
File size: 14,585 Bytes
aa333ff 9adeced 4028c0f 69c590e fae5def 9aceed2 69c590e 3df829a eccdcbe 69c590e c46bfbb b6d1b78 ea104c0 b6d1b78 b4d87fe 69c590e c46bfbb b4d87fe b6d1b78 b4d87fe c46bfbb 9bff996 b6d1b78 c46bfbb b6d1b78 69c590e c46bfbb b6d1b78 4021817 b6d1b78 4021817 69c590e 1d66f0d 69c590e 9fb1282 b6d1b78 87d3df0 b6d1b78 87d3df0 eccdcbe b6d1b78 87d3df0 b6d1b78 87d3df0 b6d1b78 87d3df0 b6d1b78 87d3df0 b6d1b78 87d3df0 81695aa eccdcbe b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 4021817 eccdcbe 4021817 b6d1b78 bf45329 b6d1b78 81695aa 057a565 b6d1b78 81695aa b6d1b78 87d3df0 b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 eccdcbe 87d3df0 b6d1b78 87d3df0 b6d1b78 20aec25 87d3df0 69c590e eccdcbe 53d3085 be61f9d 53d3085 d1c06bc b6d1b78 2db9258 69c590e 9fb1282 965419d 9dd5afd 2070485 5a362c2 9dd5afd 2070485 5a362c2 9fb1282 8d63f3f 9fb1282 ecc21b4 52ea894 ecc21b4 b6d1b78 ecc21b4 2db9258 ce6e6d2 9fb1282 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import gradio as gr
from huggingface_hub import Repository
import os
from utils.utils import norm_crop, estimate_norm, inverse_estimate_norm, transform_landmark_points, get_lm
from networks.layers import AdaIN, AdaptiveAttention
from tensorflow_addons.layers import InstanceNormalization
import numpy as np
import cv2
from scipy.ndimage import gaussian_filter
from tensorflow.keras.models import load_model
from options.swap_options import SwapOptions
token = os.environ['model_fetch']
opt = SwapOptions().parse()
retina_repo = Repository(local_dir="retina_model", clone_from="felixrosberg/retinaface_resnet50", use_auth_token=token)
from retina_model.models import *
RetinaFace = load_model("retina_model/retinaface_res50.h5",
custom_objects={"FPN": FPN,
"SSH": SSH,
"BboxHead": BboxHead,
"LandmarkHead": LandmarkHead,
"ClassHead": ClassHead})
arc_repo = Repository(local_dir="arcface_model", clone_from="felixrosberg/arcface_tf", use_auth_token=token)
ArcFace = load_model("arcface_model/arc_res50.h5")
ArcFaceE = load_model("arcface_model/arc_res50e.h5")
g_repo = Repository(local_dir="g_model_c_hq", clone_from="felixrosberg/affa_config_c_hq", use_auth_token=token)
G = load_model("g_model_c_hq/generator_t_28.h5", custom_objects={"AdaIN": AdaIN,
"AdaptiveAttention": AdaptiveAttention,
"InstanceNormalization": InstanceNormalization})
r_repo = Repository(local_dir="reconstruction_attack", clone_from="felixrosberg/reconstruction_attack", use_auth_token=token)
R = load_model("reconstruction_attack/reconstructor_42.h5", custom_objects={"AdaIN": AdaIN,
"AdaptiveAttention": AdaptiveAttention,
"InstanceNormalization": InstanceNormalization})
permuter_repo = Repository(local_dir="identity_permuter", clone_from="felixrosberg/identitypermuter", use_auth_token=token, git_user="felixrosberg")
from identity_permuter.id_permuter import identity_permuter
IDP = identity_permuter(emb_size=32, min_arg=False)
IDP.load_weights("identity_permuter/id_permuter.h5")
blend_mask_base = np.zeros(shape=(256, 256, 1))
blend_mask_base[80:244, 32:224] = 1
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
theme = gr.themes.Monochrome(
secondary_hue="emerald",
neutral_hue="teal",
).set(
body_background_fill='*primary_950',
body_background_fill_dark='*secondary_950',
body_text_color='*primary_50',
body_text_color_dark='*secondary_100',
body_text_color_subdued='*primary_300',
body_text_color_subdued_dark='*primary_300',
background_fill_primary='*primary_600',
background_fill_primary_dark='*primary_400',
background_fill_secondary='*primary_950',
background_fill_secondary_dark='*primary_950',
border_color_accent='*secondary_600',
border_color_primary='*secondary_50',
border_color_primary_dark='*secondary_50',
color_accent='*secondary_50',
color_accent_soft='*primary_500',
color_accent_soft_dark='*primary_500',
link_text_color='*secondary_950',
link_text_color_dark='*primary_50',
link_text_color_active='*primary_50',
link_text_color_active_dark='*primary_50',
link_text_color_hover='*primary_50',
link_text_color_hover_dark='*primary_50',
link_text_color_visited='*primary_50',
block_background_fill='*primary_950',
block_background_fill_dark='*primary_950',
block_border_color='*secondary_500',
block_border_color_dark='*secondary_500',
block_info_text_color='*primary_50',
block_info_text_color_dark='*primary_50',
block_label_background_fill='*primary_950',
block_label_background_fill_dark='*secondary_950',
block_label_border_color='*secondary_500',
block_label_border_color_dark='*secondary_500',
block_label_text_color='*secondary_500',
block_label_text_color_dark='*secondary_500',
block_title_background_fill='*primary_950',
panel_background_fill='*primary_950',
panel_border_color='*primary_950',
checkbox_background_color='*primary_950',
checkbox_background_color_dark='*primary_950',
checkbox_background_color_focus='*primary_950',
checkbox_border_color='*secondary_500',
input_background_fill='*primary_800',
input_background_fill_focus='*primary_950',
input_background_fill_hover='*secondary_950',
input_placeholder_color='*secondary_950',
slider_color='*primary_950',
slider_color_dark='*primary_950',
table_even_background_fill='*primary_800',
table_odd_background_fill='*primary_600',
button_primary_background_fill='*primary_800',
button_primary_background_fill_dark='*primary_800'
)
def run_inference(target, source, slider, adv_slider, settings):
try:
source = np.array(source)
target = np.array(target)
# Prepare to load video
if "anonymize" not in settings:
source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0]
source_h, source_w, _ = source.shape
source_lm = get_lm(source_a, source_w, source_h)
source_aligned = norm_crop(source, source_lm, image_size=256)
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0))
else:
source_z = None
# read frame
im = target
im_h, im_w, _ = im.shape
im_shape = (im_w, im_h)
detection_scale = im_w // 640 if im_w > 640 else 1
faces = RetinaFace(np.expand_dims(cv2.resize(im,
(im_w // detection_scale,
im_h // detection_scale)), axis=0)).numpy()
total_img = im / 255.0
for annotation in faces:
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
[annotation[6] * im_w, annotation[7] * im_h],
[annotation[8] * im_w, annotation[9] * im_h],
[annotation[10] * im_w, annotation[11] * im_h],
[annotation[12] * im_w, annotation[13] * im_h]],
dtype=np.float32)
# align the detected face
M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
im_aligned = (cv2.warpAffine(im, M, (256, 256), borderValue=0.0) - 127.5) / 127.5
if "adversarial defense" in settings:
eps = adv_slider / 200
X = tf.convert_to_tensor(np.expand_dims(im_aligned, axis=0))
with tf.GradientTape() as tape:
tape.watch(X)
X_z = ArcFaceE(tf.image.resize(X * 0.5 + 0.5, [112, 112]))
output = R([X, X_z])
loss = tf.reduce_mean(tf.abs(0 - output))
gradient = tf.sign(tape.gradient(loss, X))
adv_x = X + eps * gradient
im_aligned = tf.clip_by_value(adv_x, -1, 1)[0]
if "anonymize" in settings and "reconstruction attack" not in settings:
"""source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
anon_ratio = int(512 * (slider / 100))
anon_vector = np.ones(shape=(1, 512))
anon_vector[:, :anon_ratio] = -1
np.random.shuffle(anon_vector)
source_z *= anon_vector"""
slider_weight = slider / 100
target_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
source_z = IDP.predict(target_z)
source_z = slider_weight * source_z + (1 - slider_weight) * target_z
if "reconstruction attack" in settings:
source_z = ArcFaceE.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
# face swap
if "reconstruction attack" not in settings:
changed_face_cage = G.predict([np.expand_dims(im_aligned, axis=0),
source_z])
changed_face = changed_face_cage[0] * 0.5 + 0.5
# get inverse transformation landmarks
transformed_lmk = transform_landmark_points(M, lm_align)
# warp image back
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
# blend swapped face with target image
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
blend_mask = np.expand_dims(blend_mask, axis=-1)
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
else:
changed_face_cage = R.predict([np.expand_dims(im_aligned, axis=0),
source_z])
changed_face = changed_face_cage[0] * 0.5 + 0.5
# get inverse transformation landmarks
transformed_lmk = transform_landmark_points(M, lm_align)
# warp image back
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
# blend swapped face with target image
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
blend_mask = np.expand_dims(blend_mask, axis=-1)
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
if "compare" in settings:
total_img = np.concatenate((im / 255.0, total_img), axis=1)
total_img = np.clip(total_img, 0, 1)
total_img *= 255.0
total_img = total_img.astype('uint8')
return total_img
except Exception as e:
print(e)
return None
description = "Performs subject agnostic identity transfer from a source face to all target faces. \n\n" \
"Implementation and demo of FaceDancer, accepted to WACV 2023. \n\n" \
"Pre-print: https://arxiv.org/abs/2210.10473 \n\n" \
"Code: https://github.com/felixrosberg/FaceDancer \n\n" \
"\n\n" \
"Options:\n\n" \
"-Compare returns the target image concatenated with the results.\n\n" \
"-Anonymize will ignore the source image and perform an identity permutation of target faces.\n\n" \
"-Reconstruction attack will attempt to invert the face swap or the anonymization.\n\n" \
"-Adversarial defense will add a permutation noise that disrupts the reconstruction attack.\n\n" \
"NOTE: There is no guarantees with the anonymization process currently.\n\n" \
"NOTE: source image with too high resolution may not work properly!"
examples = [["assets/rick.jpg", "assets/musk.jpg", 100, 10, []],
["assets/rick.jpg", "assets/rick.jpg", 100, 10, ["anonymize"]]]
article = """
Demo is based of recent research from my Ph.D work. Results expects to be published in the coming months.
"""
with gr.Blocks(theme=theme) as blk_demo:
gr.Markdown(value="# Face Dancer \n\n"
"## Paper: [FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping](https://arxiv.org/abs/2210.10473) \n"
"## Check out the code [here](https://github.com/felixrosberg/FaceDancer)")
with gr.Row():
with gr.Column():
with gr.Group():
trg_in = gr.Image(type="pil", label='Target')
src_in = gr.Image(type="pil", label='Source')
with gr.Row():
b1 = gr.Button("Face Swap")
with gr.Row():
with gr.Accordion("Options", open=False):
chk_in = gr.CheckboxGroup(["Compare",
"Anonymize",
"Reconstruction Attack",
"Adversarial Defense"],
label="Mode",
info="Anonymize mode? "
"Apply reconstruction attack? "
"Apply defense against reconstruction attack?")
def_in = gr.Slider(0, 100, value=100,
label='Anonymization ratio (%)')
mrg_in = gr.Slider(0, 100, value=100,
label='Adversarial defense ratio (%)')
gr.Examples(examples=[["assets/musk.jpg"], ["assets/rick.jpg"]],
inputs=trg_in)
with gr.Column():
with gr.Group():
ano_out = gr.Image(type="pil", label='Output')
b1.click(run_inference, inputs=[trg_in, src_in, def_in, mrg_in, chk_in], outputs=ano_out)
"""iface = gradio.Interface(run_inference,
[gradio.Image(shape=None, type="pil", label='Target'),
gradio.Image(shape=None, type="pil", label='Source'),
gradio.Slider(0, 100, value=100, label="Anonymization ratio (%)"),
gradio.Slider(0, 100, value=100, label="Adversarial defense ratio (%)"),
gradio.CheckboxGroup(["compare",
"anonymize",
"reconstruction attack",
"adversarial defense"],
label='Options')],
"image",
title="Face Swap",
description=description,
examples=examples,
article=article,
layout="vertical")"""
blk_demo.launch()
|