Spaces:
Running
Running
felixrosberg
commited on
Commit
β’
4021817
1
Parent(s):
04e62ee
Update app.py
Browse files
app.py
CHANGED
@@ -39,6 +39,14 @@ G = load_model("g_model_c_hq/generator_t_28.h5", custom_objects={"AdaIN": AdaIN,
|
|
39 |
"AdaptiveAttention": AdaptiveAttention,
|
40 |
"InstanceNormalization": InstanceNormalization})
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
blend_mask_base = np.zeros(shape=(256, 256, 1))
|
43 |
blend_mask_base[80:246, 32:224] = 1
|
44 |
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
|
@@ -84,12 +92,15 @@ def run_inference(target, source, slider, settings):
|
|
84 |
im_aligned = cv2.warpAffine(im, M, (256, 256), borderValue=0.0)
|
85 |
|
86 |
if "anonymize" in settings:
|
87 |
-
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
|
88 |
anon_ratio = int(512 * (slider / 100))
|
89 |
anon_vector = np.ones(shape=(1, 512))
|
90 |
anon_vector[:, :anon_ratio] = -1
|
91 |
np.random.shuffle(anon_vector)
|
92 |
-
source_z *= anon_vector
|
|
|
|
|
|
|
93 |
|
94 |
# face swap
|
95 |
changed_face_cage = G.predict([np.expand_dims((im_aligned - 127.5) / 127.5, axis=0),
|
|
|
39 |
"AdaptiveAttention": AdaptiveAttention,
|
40 |
"InstanceNormalization": InstanceNormalization})
|
41 |
|
42 |
+
permuter_repo = Repository(local_dir="identity_permuter", clone_from="felixrosberg/identitypermuter",
|
43 |
+
private=True, use_auth_token=token, git_user="felixrosberg")
|
44 |
+
|
45 |
+
from identity_permuter.id_permuter import identity_permuter
|
46 |
+
IDP = identity_permuter(emb_size=32, min_arg=False)
|
47 |
+
IDP.load_weights("identity_permuter/id_permuter.h5")
|
48 |
+
|
49 |
+
|
50 |
blend_mask_base = np.zeros(shape=(256, 256, 1))
|
51 |
blend_mask_base[80:246, 32:224] = 1
|
52 |
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
|
|
|
92 |
im_aligned = cv2.warpAffine(im, M, (256, 256), borderValue=0.0)
|
93 |
|
94 |
if "anonymize" in settings:
|
95 |
+
"""source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
|
96 |
anon_ratio = int(512 * (slider / 100))
|
97 |
anon_vector = np.ones(shape=(1, 512))
|
98 |
anon_vector[:, :anon_ratio] = -1
|
99 |
np.random.shuffle(anon_vector)
|
100 |
+
source_z *= anon_vector"""
|
101 |
+
|
102 |
+
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
|
103 |
+
source_z = IDP.predict(source_z)
|
104 |
|
105 |
# face swap
|
106 |
changed_face_cage = G.predict([np.expand_dims((im_aligned - 127.5) / 127.5, axis=0),
|