Spaces:
Running
Running
File size: 10,552 Bytes
69c590e 4028c0f 69c590e fae5def 9aceed2 69c590e e1b03cf eccdcbe 69c590e fae5def 1b7cc25 b6d1b78 ea104c0 b6d1b78 b4d87fe 69c590e fae5def 1b7cc25 b4d87fe b6d1b78 b4d87fe 9bff996 1b7cc25 9bff996 b6d1b78 69c590e 4021817 b6d1b78 4021817 b6d1b78 4021817 69c590e 1d66f0d 69c590e b6d1b78 87d3df0 b6d1b78 87d3df0 eccdcbe b6d1b78 87d3df0 b6d1b78 87d3df0 b6d1b78 87d3df0 b6d1b78 87d3df0 b6d1b78 87d3df0 81695aa eccdcbe b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 4021817 eccdcbe 4021817 b6d1b78 bf45329 b6d1b78 81695aa 057a565 b6d1b78 81695aa b6d1b78 87d3df0 b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 81695aa b6d1b78 eccdcbe 87d3df0 b6d1b78 87d3df0 b6d1b78 20aec25 87d3df0 69c590e eccdcbe 53d3085 be61f9d 53d3085 de22594 b6d1b78 2db9258 69c590e 42171ab eccdcbe b6d1b78 d4b1c40 2db9258 ce6e6d2 8a8e4cb 69c590e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import gradio
from huggingface_hub import Repository
import os
from utils.utils import norm_crop, estimate_norm, inverse_estimate_norm, transform_landmark_points, get_lm
from networks.layers import AdaIN, AdaptiveAttention
from tensorflow_addons.layers import InstanceNormalization
import numpy as np
import cv2
from scipy.ndimage import gaussian_filter
from tensorflow.keras.models import load_model
from options.swap_options import SwapOptions
# .
token = os.environ['model_fetch']
opt = SwapOptions().parse()
retina_repo = Repository(local_dir="retina_model", clone_from="felixrosberg/retinaface_resnet50",
private=True, use_auth_token=token, git_user="felixrosberg")
from retina_model.models import *
RetinaFace = load_model("retina_model/retinaface_res50.h5",
custom_objects={"FPN": FPN,
"SSH": SSH,
"BboxHead": BboxHead,
"LandmarkHead": LandmarkHead,
"ClassHead": ClassHead})
arc_repo = Repository(local_dir="arcface_model", clone_from="felixrosberg/arcface_tf",
private=True, use_auth_token=token)
ArcFace = load_model("arcface_model/arc_res50.h5")
ArcFaceE = load_model("arcface_model/arc_res50e.h5")
g_repo = Repository(local_dir="g_model_c_hq", clone_from="felixrosberg/affa_config_c_hq",
private=True, use_auth_token=token)
G = load_model("g_model_c_hq/generator_t_28.h5", custom_objects={"AdaIN": AdaIN,
"AdaptiveAttention": AdaptiveAttention,
"InstanceNormalization": InstanceNormalization})
r_repo = Repository(local_dir="reconstruction_attack", clone_from="felixrosberg/reconstruction_attack",
private=True, use_auth_token=token)
R = load_model("reconstruction_attack/reconstructor_42.h5", custom_objects={"AdaIN": AdaIN,
"AdaptiveAttention": AdaptiveAttention,
"InstanceNormalization": InstanceNormalization})
permuter_repo = Repository(local_dir="identity_permuter", clone_from="felixrosberg/identitypermuter",
private=True, use_auth_token=token, git_user="felixrosberg")
from identity_permuter.id_permuter import identity_permuter
IDP = identity_permuter(emb_size=32, min_arg=False)
IDP.load_weights("identity_permuter/id_permuter.h5")
blend_mask_base = np.zeros(shape=(256, 256, 1))
blend_mask_base[80:244, 32:224] = 1
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
def run_inference(target, source, slider, adv_slider, settings):
try:
source = np.array(source)
target = np.array(target)
# Prepare to load video
if "anonymize" not in settings:
source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0]
source_h, source_w, _ = source.shape
source_lm = get_lm(source_a, source_w, source_h)
source_aligned = norm_crop(source, source_lm, image_size=256)
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0))
else:
source_z = None
# read frame
im = target
im_h, im_w, _ = im.shape
im_shape = (im_w, im_h)
detection_scale = im_w // 640 if im_w > 640 else 1
faces = RetinaFace(np.expand_dims(cv2.resize(im,
(im_w // detection_scale,
im_h // detection_scale)), axis=0)).numpy()
total_img = im / 255.0
for annotation in faces:
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
[annotation[6] * im_w, annotation[7] * im_h],
[annotation[8] * im_w, annotation[9] * im_h],
[annotation[10] * im_w, annotation[11] * im_h],
[annotation[12] * im_w, annotation[13] * im_h]],
dtype=np.float32)
# align the detected face
M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
im_aligned = (cv2.warpAffine(im, M, (256, 256), borderValue=0.0) - 127.5) / 127.5
if "adversarial defense" in settings:
eps = adv_slider / 200
X = tf.convert_to_tensor(np.expand_dims(im_aligned, axis=0))
with tf.GradientTape() as tape:
tape.watch(X)
X_z = ArcFaceE(tf.image.resize(X * 0.5 + 0.5, [112, 112]))
output = R([X, X_z])
loss = tf.reduce_mean(tf.abs(0 - output))
gradient = tf.sign(tape.gradient(loss, X))
adv_x = X + eps * gradient
im_aligned = tf.clip_by_value(adv_x, -1, 1)[0]
if "anonymize" in settings and "reconstruction attack" not in settings:
"""source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
anon_ratio = int(512 * (slider / 100))
anon_vector = np.ones(shape=(1, 512))
anon_vector[:, :anon_ratio] = -1
np.random.shuffle(anon_vector)
source_z *= anon_vector"""
slider_weight = slider / 100
target_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
source_z = IDP.predict(target_z)
source_z = slider_weight * source_z + (1 - slider_weight) * target_z
if "reconstruction attack" in settings:
source_z = ArcFaceE.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
# face swap
if "reconstruction attack" not in settings:
changed_face_cage = G.predict([np.expand_dims(im_aligned, axis=0),
source_z])
changed_face = changed_face_cage[0] * 0.5 + 0.5
# get inverse transformation landmarks
transformed_lmk = transform_landmark_points(M, lm_align)
# warp image back
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
# blend swapped face with target image
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
blend_mask = np.expand_dims(blend_mask, axis=-1)
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
else:
changed_face_cage = R.predict([np.expand_dims(im_aligned, axis=0),
source_z])
changed_face = changed_face_cage[0] * 0.5 + 0.5
# get inverse transformation landmarks
transformed_lmk = transform_landmark_points(M, lm_align)
# warp image back
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
# blend swapped face with target image
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
blend_mask = np.expand_dims(blend_mask, axis=-1)
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
if "compare" in settings:
total_img = np.concatenate((im / 255.0, total_img), axis=1)
total_img = np.clip(total_img, 0, 1)
total_img *= 255.0
total_img = total_img.astype('uint8')
return total_img
except Exception as e:
print(e)
return None
description = "Performs subject agnostic identity transfer from a source face to all target faces. \n\n" \
"Implementation and demo of FaceDancer, accepted to WACV 2023. \n\n" \
"Pre-print: https://arxiv.org/abs/2210.10473 \n\n" \
"Code: https://github.com/felixrosberg/FaceDancer \n\n" \
"\n\n" \
"Options:\n\n" \
"-Compare returns the target image concatenated with the results.\n\n" \
"-Anonymize will ignore the source image and perform an identity permutation of target faces.\n\n" \
"-Reconstruction attack will attempt to invert the face swap or the anonymization.\n\n" \
"-Adversarial defense will add a permutation noise that disrupts the reconstruction attack.\n\n" \
"NOTE: There is no guarantees with the anonymization process currently.\n\n" \
"NOTE: source image with too high resolution may not work properly!"
examples = [["assets/rick.jpg", "assets/musk.jpg", 100, 10, ["compare"]],
["assets/musk.jpg", "assets/musk.jpg", 100, 10, ["anonymize"]]]
article = """
Demo is based of recent research from my Ph.D work. Results expects to be published in the coming months.
"""
iface = gradio.Interface(run_inference,
[gradio.inputs.Image(shape=None, label='Target'),
gradio.inputs.Image(shape=None, label='Source'),
gradio.inputs.Slider(0, 100, default=100, label="Anonymization ratio (%)"),
gradio.inputs.Slider(0, 100, default=100, label="Adversarial defense ratio (%)"),
gradio.inputs.CheckboxGroup(["compare",
"anonymize",
"reconstruction attack",
"adversarial defense"],
label='Options')],
gradio.outputs.Image(),
title="Face Swap",
description=description,
examples=examples,
article=article,
layout="vertical")
iface.launch()
|