File size: 4,692 Bytes
865fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
from glob import glob
import numpy as np
import json
from matplotlib import pyplot as plt
import pandas as pd
def get_gts(clip):    
    '''
    clip: abs path to the clip dir
    '''
    keypoints_files = sorted(glob(os.path.join(clip, 'keypoints_new/person_1')+'/*.json'))
    
    upper_body_points = list(np.arange(0, 25))
    poses = [] 
    confs = []
    neck_to_nose_len = []
    mean_position = []
    for kp_file in keypoints_files:
        kp_load = json.load(open(kp_file, 'r'))['people'][0]
        posepts = kp_load['pose_keypoints_2d']
        lhandpts = kp_load['hand_left_keypoints_2d']
        rhandpts = kp_load['hand_right_keypoints_2d']
        facepts = kp_load['face_keypoints_2d']

        neck = np.array(posepts).reshape(-1,3)[1]
        nose = np.array(posepts).reshape(-1,3)[0]
        x_offset = abs(neck[0]-nose[0])
        y_offset = abs(neck[1]-nose[1])
        neck_to_nose_len.append(y_offset)
        mean_position.append([neck[0],neck[1]])

        keypoints=np.array(posepts+lhandpts+rhandpts+facepts).reshape(-1,3)[:,:2]

        upper_body = keypoints[upper_body_points, :]
        hand_points = keypoints[25:, :]
        keypoints = np.vstack([upper_body, hand_points])

        poses.append(keypoints)

    if len(neck_to_nose_len) > 0:
        scale_factor = np.mean(neck_to_nose_len)
    else:
        raise ValueError(clip)
    mean_position = np.mean(np.array(mean_position), axis=0)
    
    unlocalized_poses = np.array(poses).copy()
    localized_poses = []
    for i in range(len(poses)):
        keypoints = poses[i]
        neck = keypoints[1].copy()

        keypoints[:, 0] = (keypoints[:, 0] - neck[0]) / scale_factor
        keypoints[:, 1] = (keypoints[:, 1] - neck[1]) / scale_factor
        localized_poses.append(keypoints.reshape(-1))
        
    localized_poses=np.array(localized_poses)
    return unlocalized_poses, localized_poses, (scale_factor, mean_position)

def get_full_path(wav_name, speaker, split):
    '''
    get clip path from aud file
    '''
    wav_name = os.path.basename(wav_name)
    wav_name = os.path.splitext(wav_name)[0]
    clip_name, vid_name = wav_name[:10], wav_name[11:]

    full_path = os.path.join('pose_dataset/videos/', speaker, 'clips', vid_name, 'images/half', split, clip_name)

    assert os.path.isdir(full_path), full_path

    return full_path

def smooth(res):
    '''
    res: (B, seq_len, pose_dim)
    '''
    window = [res[:, 7, :], res[:, 8, :], res[:, 9, :], res[:, 10, :], res[:, 11, :], res[:, 12, :]]
    w_size=7
    for i in range(10, res.shape[1]-3):
        window.append(res[:, i+3, :])
        if len(window) > w_size:
            window = window[1:]
        
        if (i%25) in [22, 23, 24, 0, 1, 2, 3]:
            res[:, i, :] = np.mean(window, axis=1)
    
    return res

def cvt25(pred_poses, gt_poses=None):
    '''
    gt_poses: (1, seq_len, 270), 135 *2
    pred_poses: (B, seq_len, 108), 54 * 2
    '''
    if gt_poses is None:
        gt_poses = np.zeros_like(pred_poses)
    else:
        gt_poses = gt_poses.repeat(pred_poses.shape[0], axis=0)

    length = min(pred_poses.shape[1], gt_poses.shape[1])
    pred_poses = pred_poses[:, :length, :]
    gt_poses = gt_poses[:, :length, :]
    gt_poses = gt_poses.reshape(gt_poses.shape[0], gt_poses.shape[1], -1, 2)
    pred_poses = pred_poses.reshape(pred_poses.shape[0], pred_poses.shape[1], -1, 2)

    gt_poses[:, :, [1, 2, 3, 4, 5, 6, 7], :] = pred_poses[:, :, 1:8, :]
    gt_poses[:, :, 25:25+21+21, :] = pred_poses[:, :, 12:, :]
    
    return gt_poses.reshape(gt_poses.shape[0], gt_poses.shape[1], -1)

def hand_points(seq):
    '''
    seq: (B, seq_len, 135*2)
    hands only
    '''
    hand_idx = [1, 2, 3, 4,5 ,6,7] + list(range(25, 25+21+21))
    seq = seq.reshape(seq.shape[0], seq.shape[1], -1, 2)
    return seq[:, :, hand_idx, :].reshape(seq.shape[0], seq.shape[1], -1)

def valid_points(seq):
    '''
    hands with some head points
    '''
    valid_idx = [0, 1, 2, 3, 4,5 ,6,7, 8, 9, 10, 11] + list(range(25, 25+21+21))
    seq = seq.reshape(seq.shape[0], seq.shape[1], -1, 2)

    seq = seq[:, :, valid_idx, :].reshape(seq.shape[0], seq.shape[1], -1)
    assert seq.shape[-1] == 108, seq.shape
    return seq

def draw_cdf(seq, save_name='cdf.jpg', color='slatebule'):
    plt.figure()
    plt.hist(seq, bins=100, range=(0, 100), color=color)
    plt.savefig(save_name)

def to_excel(seq, save_name='res.xlsx'):
    '''
    seq: (T)
    '''
    df = pd.DataFrame(seq)
    writer = pd.ExcelWriter(save_name)
    df.to_excel(writer, 'sheet1')
    writer.save()
    writer.close()


if __name__ == '__main__':
    random_data = np.random.randint(0, 10, 100)
    draw_cdf(random_data)