Spaces:
Build error
Build error
feifeifeiliu
commited on
Commit
•
865fd8a
1
Parent(s):
d8f41ae
first version
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +7 -0
- README.md +2 -2
- __init__.py +0 -0
- app.py +282 -0
- config/LS3DCG.json +60 -0
- config/body_pixel.json +63 -0
- config/body_vq.json +62 -0
- config/face.json +59 -0
- data_utils/__init__.py +3 -0
- data_utils/__pycache__/__init__.cpython-37.pyc +0 -0
- data_utils/__pycache__/consts.cpython-37.pyc +0 -0
- data_utils/__pycache__/dataloader_torch.cpython-37.pyc +0 -0
- data_utils/__pycache__/lower_body.cpython-37.pyc +0 -0
- data_utils/__pycache__/mesh_dataset.cpython-37.pyc +0 -0
- data_utils/__pycache__/rotation_conversion.cpython-37.pyc +0 -0
- data_utils/__pycache__/utils.cpython-37.pyc +0 -0
- data_utils/axis2matrix.py +29 -0
- data_utils/consts.py +0 -0
- data_utils/dataloader_torch.py +279 -0
- data_utils/dataset_preprocess.py +170 -0
- data_utils/get_j.py +51 -0
- data_utils/hand_component.json +0 -0
- data_utils/lower_body.py +143 -0
- data_utils/mesh_dataset.py +348 -0
- data_utils/rotation_conversion.py +551 -0
- data_utils/utils.py +333 -0
- demo/1st-page/1st-page-upper.mp4 +0 -0
- demo/1st-page/1st-page-upper.npy +3 -0
- demo/french/french.mp4 +0 -0
- demo/french/french.npy +3 -0
- demo/rich/rich.mp4 +3 -0
- demo/rich/rich.npy +3 -0
- demo/song/cut.mp4 +0 -0
- demo/song/song.mp4 +3 -0
- demo/song/song.npy +3 -0
- demo/style/chemistry.mp4 +0 -0
- demo/style/chemistry.npy +3 -0
- demo/style/conan.mp4 +0 -0
- demo/style/conan.npy +3 -0
- demo/style/diversity.mp4 +3 -0
- demo/style/diversity.npy +3 -0
- demo/style/face.mp4 +0 -0
- demo/style/face.npy +3 -0
- demo/style/oliver.mp4 +0 -0
- demo/style/oliver.npy +3 -0
- demo/style/seth.mp4 +0 -0
- demo/style/seth.npy +3 -0
- demo_audio/1st-page.wav +0 -0
- demo_audio/french.wav +0 -0
- demo_audio/rich.wav +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
demo_audio/rich_short.wav filter=lfs diff=lfs merge=lfs -text
|
36 |
+
demo_audio/rich.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
demo_audio/song.wav filter=lfs diff=lfs merge=lfs -text
|
38 |
+
demo/rich/rich.mp4 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
demo/song/song.mp4 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
demo/style/diversity.mp4 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
visualise/teaser_01.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: TalkSHOW
|
3 |
-
emoji:
|
4 |
colorFrom: pink
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.23.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: TalkSHOW
|
3 |
+
emoji: 🌍
|
4 |
colorFrom: pink
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.23.0
|
8 |
app_file: app.py
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
sys.path.append(os.getcwd())
|
5 |
+
os.system(r"cd mesh-master")
|
6 |
+
os.system(r"make all")
|
7 |
+
os.system(r"cd ..")
|
8 |
+
|
9 |
+
from transformers import Wav2Vec2Processor
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import json
|
13 |
+
import smplx as smpl
|
14 |
+
|
15 |
+
from nets import *
|
16 |
+
from trainer.options import parse_args
|
17 |
+
from data_utils import torch_data
|
18 |
+
from trainer.config import load_JsonConfig
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from torch.utils import data
|
24 |
+
from data_utils.rotation_conversion import rotation_6d_to_matrix, matrix_to_axis_angle
|
25 |
+
from data_utils.lower_body import part2full, pred2poses, poses2pred, poses2poses
|
26 |
+
from visualise.rendering import RenderTool
|
27 |
+
|
28 |
+
global device
|
29 |
+
device = 'cpu'
|
30 |
+
|
31 |
+
|
32 |
+
def init_model(model_name, model_path, args, config):
|
33 |
+
if model_name == 's2g_face':
|
34 |
+
generator = s2g_face(
|
35 |
+
args,
|
36 |
+
config,
|
37 |
+
)
|
38 |
+
elif model_name == 's2g_body_vq':
|
39 |
+
generator = s2g_body_vq(
|
40 |
+
args,
|
41 |
+
config,
|
42 |
+
)
|
43 |
+
elif model_name == 's2g_body_pixel':
|
44 |
+
generator = s2g_body_pixel(
|
45 |
+
args,
|
46 |
+
config,
|
47 |
+
)
|
48 |
+
elif model_name == 's2g_LS3DCG':
|
49 |
+
generator = LS3DCG(
|
50 |
+
args,
|
51 |
+
config,
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
raise NotImplementedError
|
55 |
+
|
56 |
+
model_ckpt = torch.load(model_path, map_location=torch.device('cpu'))
|
57 |
+
if model_name == 'smplx_S2G':
|
58 |
+
generator.generator.load_state_dict(model_ckpt['generator']['generator'])
|
59 |
+
|
60 |
+
elif 'generator' in list(model_ckpt.keys()):
|
61 |
+
generator.load_state_dict(model_ckpt['generator'])
|
62 |
+
else:
|
63 |
+
model_ckpt = {'generator': model_ckpt}
|
64 |
+
generator.load_state_dict(model_ckpt)
|
65 |
+
|
66 |
+
return generator
|
67 |
+
|
68 |
+
|
69 |
+
def get_vertices(smplx_model, betas, result_list, exp, require_pose=False):
|
70 |
+
vertices_list = []
|
71 |
+
poses_list = []
|
72 |
+
expression = torch.zeros([1, 100])
|
73 |
+
|
74 |
+
for i in result_list:
|
75 |
+
vertices = []
|
76 |
+
poses = []
|
77 |
+
for j in range(i.shape[0]):
|
78 |
+
output = smplx_model(betas=betas,
|
79 |
+
expression=i[j][165:265].unsqueeze_(dim=0) if exp else expression,
|
80 |
+
jaw_pose=i[j][0:3].unsqueeze_(dim=0),
|
81 |
+
leye_pose=i[j][3:6].unsqueeze_(dim=0),
|
82 |
+
reye_pose=i[j][6:9].unsqueeze_(dim=0),
|
83 |
+
global_orient=i[j][9:12].unsqueeze_(dim=0),
|
84 |
+
body_pose=i[j][12:75].unsqueeze_(dim=0),
|
85 |
+
left_hand_pose=i[j][75:120].unsqueeze_(dim=0),
|
86 |
+
right_hand_pose=i[j][120:165].unsqueeze_(dim=0),
|
87 |
+
return_verts=True)
|
88 |
+
vertices.append(output.vertices.detach().cpu().numpy().squeeze())
|
89 |
+
# pose = torch.cat([output.body_pose, output.left_hand_pose, output.right_hand_pose], dim=1)
|
90 |
+
pose = output.body_pose
|
91 |
+
poses.append(pose.detach().cpu())
|
92 |
+
vertices = np.asarray(vertices)
|
93 |
+
vertices_list.append(vertices)
|
94 |
+
poses = torch.cat(poses, dim=0)
|
95 |
+
poses_list.append(poses)
|
96 |
+
if require_pose:
|
97 |
+
return vertices_list, poses_list
|
98 |
+
else:
|
99 |
+
return vertices_list, None
|
100 |
+
|
101 |
+
|
102 |
+
global_orient = torch.tensor([3.0747, -0.0158, -0.0152])
|
103 |
+
|
104 |
+
parser = parse_args()
|
105 |
+
args = parser.parse_args()
|
106 |
+
|
107 |
+
RUN_MODE = "local"
|
108 |
+
if RUN_MODE != "local":
|
109 |
+
os.system("wget -P experiments/2022-10-15-smplx_S2G-face-3d/ "
|
110 |
+
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-10-15-smplx_S2G-face-3d/ckpt-99.pth")
|
111 |
+
os.system("wget -P experiments/2022-10-31-smplx_S2G-body-vq-3d/ "
|
112 |
+
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-10-31-smplx_S2G-body-vq-3d/ckpt-99.pth")
|
113 |
+
os.system("wget -P experiments/2022-11-02-smplx_S2G-body-pixel-3d/ "
|
114 |
+
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/2022-11-02-smplx_S2G-body-pixel-3d/ckpt-99.pth")
|
115 |
+
os.system("wget -P visualise/smplx/ "
|
116 |
+
"https://huggingface.co/feifeifeiliu/TalkSHOW/resolve/main/smplx/SMPLX_NEUTRAL.npz")
|
117 |
+
|
118 |
+
config = load_JsonConfig("config/body_pixel.json")
|
119 |
+
|
120 |
+
face_model_name = args.face_model_name
|
121 |
+
face_model_path = args.face_model_path
|
122 |
+
body_model_name = args.body_model_name
|
123 |
+
body_model_path = args.body_model_path
|
124 |
+
smplx_path = './visualise/'
|
125 |
+
|
126 |
+
os.environ['smplx_npz_path'] = config.smplx_npz_path
|
127 |
+
os.environ['extra_joint_path'] = config.extra_joint_path
|
128 |
+
os.environ['j14_regressor_path'] = config.j14_regressor_path
|
129 |
+
|
130 |
+
print('init model...')
|
131 |
+
g_body = init_model(body_model_name, body_model_path, args, config)
|
132 |
+
generator2 = None
|
133 |
+
g_face = init_model(face_model_name, face_model_path, args, config)
|
134 |
+
|
135 |
+
print('init smlpx model...')
|
136 |
+
dtype = torch.float64
|
137 |
+
model_params = dict(model_path=smplx_path,
|
138 |
+
model_type='smplx',
|
139 |
+
create_global_orient=True,
|
140 |
+
create_body_pose=True,
|
141 |
+
create_betas=True,
|
142 |
+
num_betas=300,
|
143 |
+
create_left_hand_pose=True,
|
144 |
+
create_right_hand_pose=True,
|
145 |
+
use_pca=False,
|
146 |
+
flat_hand_mean=False,
|
147 |
+
create_expression=True,
|
148 |
+
num_expression_coeffs=100,
|
149 |
+
num_pca_comps=12,
|
150 |
+
create_jaw_pose=True,
|
151 |
+
create_leye_pose=True,
|
152 |
+
create_reye_pose=True,
|
153 |
+
create_transl=False,
|
154 |
+
# gender='ne',
|
155 |
+
dtype=dtype, )
|
156 |
+
smplx_model = smpl.create(**model_params).to(device)
|
157 |
+
print('init rendertool...')
|
158 |
+
rendertool = RenderTool('visualise/video/' + config.Log.name)
|
159 |
+
|
160 |
+
|
161 |
+
def infer(wav, identity, pose):
|
162 |
+
betas = torch.zeros([1, 300], dtype=torch.float64).to(device)
|
163 |
+
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
|
164 |
+
am_sr = 16000
|
165 |
+
num_sample = args.num_sample
|
166 |
+
cur_wav_file = wav
|
167 |
+
|
168 |
+
if pose == 'Stand':
|
169 |
+
stand = True
|
170 |
+
face = False
|
171 |
+
elif pose == 'Sit':
|
172 |
+
stand = False
|
173 |
+
face = False
|
174 |
+
else:
|
175 |
+
stand = False
|
176 |
+
face = True
|
177 |
+
|
178 |
+
if face:
|
179 |
+
body_static = torch.zeros([1, 162], device=device)
|
180 |
+
body_static[:, 6:9] = torch.tensor([3.0747, -0.0158, -0.0152]).reshape(1, 3).repeat(body_static.shape[0], 1)
|
181 |
+
|
182 |
+
if identity == 'Oliver':
|
183 |
+
id = 0
|
184 |
+
elif identity == 'Chemistry':
|
185 |
+
id = 1
|
186 |
+
elif identity == 'Seth':
|
187 |
+
id = 2
|
188 |
+
elif identity == 'Conan':
|
189 |
+
id = 3
|
190 |
+
|
191 |
+
result_list = []
|
192 |
+
|
193 |
+
pred_face = g_face.infer_on_audio(cur_wav_file,
|
194 |
+
initial_pose=None,
|
195 |
+
norm_stats=None,
|
196 |
+
w_pre=False,
|
197 |
+
# id=id,
|
198 |
+
frame=None,
|
199 |
+
am=am,
|
200 |
+
am_sr=am_sr
|
201 |
+
)
|
202 |
+
pred_face = torch.tensor(pred_face).squeeze().to(device)
|
203 |
+
# pred_face = torch.zeros([gt.shape[0], 105])
|
204 |
+
|
205 |
+
if config.Data.pose.convert_to_6d:
|
206 |
+
pred_jaw = pred_face[:, :6].reshape(pred_face.shape[0], -1, 6)
|
207 |
+
pred_jaw = matrix_to_axis_angle(rotation_6d_to_matrix(pred_jaw)).reshape(pred_face.shape[0], -1)
|
208 |
+
pred_face = pred_face[:, 6:]
|
209 |
+
else:
|
210 |
+
pred_jaw = pred_face[:, :3]
|
211 |
+
pred_face = pred_face[:, 3:]
|
212 |
+
|
213 |
+
id = torch.tensor([id], device=device)
|
214 |
+
|
215 |
+
for i in range(num_sample):
|
216 |
+
pred_res = g_body.infer_on_audio(cur_wav_file,
|
217 |
+
initial_pose=None,
|
218 |
+
norm_stats=None,
|
219 |
+
txgfile=None,
|
220 |
+
id=id,
|
221 |
+
var=None,
|
222 |
+
fps=30,
|
223 |
+
w_pre=False
|
224 |
+
)
|
225 |
+
pred = torch.tensor(pred_res).squeeze().to(device)
|
226 |
+
|
227 |
+
if pred.shape[0] < pred_face.shape[0]:
|
228 |
+
repeat_frame = pred[-1].unsqueeze(dim=0).repeat(pred_face.shape[0] - pred.shape[0], 1)
|
229 |
+
pred = torch.cat([pred, repeat_frame], dim=0)
|
230 |
+
else:
|
231 |
+
pred = pred[:pred_face.shape[0], :]
|
232 |
+
|
233 |
+
body_or_face = False
|
234 |
+
if pred.shape[1] < 275:
|
235 |
+
body_or_face = True
|
236 |
+
if config.Data.pose.convert_to_6d:
|
237 |
+
pred = pred.reshape(pred.shape[0], -1, 6)
|
238 |
+
pred = matrix_to_axis_angle(rotation_6d_to_matrix(pred))
|
239 |
+
pred = pred.reshape(pred.shape[0], -1)
|
240 |
+
|
241 |
+
if config.Model.model_name == 's2g_LS3DCG':
|
242 |
+
pred = torch.cat([pred[:, :3], pred[:, 103:], pred[:, 3:103]], dim=-1)
|
243 |
+
else:
|
244 |
+
pred = torch.cat([pred_jaw, pred, pred_face], dim=-1)
|
245 |
+
|
246 |
+
# pred[:, 9:12] = global_orient
|
247 |
+
pred = part2full(pred, stand)
|
248 |
+
if face:
|
249 |
+
pred = torch.cat([pred[:, :3], body_static.repeat(pred.shape[0], 1), pred[:, -100:]], dim=-1)
|
250 |
+
# result_list[0] = poses2pred(result_list[0], stand)
|
251 |
+
# if gt_0 is None:
|
252 |
+
# gt_0 = gt
|
253 |
+
# pred = pred2poses(pred, gt_0)
|
254 |
+
# result_list[0] = poses2poses(result_list[0], gt_0)
|
255 |
+
|
256 |
+
result_list.append(pred)
|
257 |
+
|
258 |
+
|
259 |
+
vertices_list, _ = get_vertices(smplx_model, betas, result_list, config.Data.pose.expression)
|
260 |
+
|
261 |
+
result_list = [res.to('cpu') for res in result_list]
|
262 |
+
dict = np.concatenate(result_list[:], axis=0)
|
263 |
+
|
264 |
+
rendertool._render_sequences(cur_wav_file, vertices_list, stand=stand, face=face, whole_body=args.whole_body)
|
265 |
+
return "result.mp4"
|
266 |
+
|
267 |
+
def main():
|
268 |
+
|
269 |
+
iface = gr.Interface(fn=infer, inputs=["audio",
|
270 |
+
gr.Radio(["Oliver", "Chemistry", "Seth", "Conan"]),
|
271 |
+
gr.Radio(["Stand", "Sit", "Only Face"]),
|
272 |
+
],
|
273 |
+
outputs="video",
|
274 |
+
examples=[[os.path.join(os.path.dirname(__file__), "demo_audio/style.wav"), "Oliver", "Sit"]])
|
275 |
+
iface.launch(debug=True)
|
276 |
+
|
277 |
+
|
278 |
+
if __name__ == '__main__':
|
279 |
+
main()
|
280 |
+
|
281 |
+
|
282 |
+
|
config/LS3DCG.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config_root_path": "/is/cluster/scratch/hyi/ExpressiveBody/SMPLifyX4/scripts",
|
3 |
+
"dataset_load_mode": "pickle",
|
4 |
+
"store_file_path": "store.pkl",
|
5 |
+
"smplx_npz_path": "visualise/smplx_model/SMPLX_NEUTRAL_2020.npz",
|
6 |
+
"extra_joint_path": "visualise/smplx_model/smplx_extra_joints.yaml",
|
7 |
+
"j14_regressor_path": "visualise/smplx_model/SMPLX_to_J14.pkl",
|
8 |
+
"param": {
|
9 |
+
"w_j": 1,
|
10 |
+
"w_b": 1,
|
11 |
+
"w_h": 1
|
12 |
+
},
|
13 |
+
"Data": {
|
14 |
+
"data_root": "../ExpressiveWholeBodyDatasetv1.0/",
|
15 |
+
"pklname": "_3d_mfcc.pkl",
|
16 |
+
"whole_video": false,
|
17 |
+
"pose": {
|
18 |
+
"normalization": false,
|
19 |
+
"convert_to_6d": false,
|
20 |
+
"norm_method": "all",
|
21 |
+
"augmentation": false,
|
22 |
+
"generate_length": 88,
|
23 |
+
"pre_pose_length": 0,
|
24 |
+
"pose_dim": 99,
|
25 |
+
"expression": true
|
26 |
+
},
|
27 |
+
"aud": {
|
28 |
+
"feat_method": "mfcc",
|
29 |
+
"aud_feat_dim": 64,
|
30 |
+
"aud_feat_win_size": null,
|
31 |
+
"context_info": false
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"Model": {
|
35 |
+
"model_type": "body",
|
36 |
+
"model_name": "s2g_LS3DCG",
|
37 |
+
"code_num": 2048,
|
38 |
+
"AudioOpt": "Adam",
|
39 |
+
"encoder_choice": "mfcc",
|
40 |
+
"gan": false,
|
41 |
+
},
|
42 |
+
"DataLoader": {
|
43 |
+
"batch_size": 128,
|
44 |
+
"num_workers": 0
|
45 |
+
},
|
46 |
+
"Train": {
|
47 |
+
"epochs": 100,
|
48 |
+
"max_gradient_norm": 5,
|
49 |
+
"learning_rate": {
|
50 |
+
"generator_learning_rate": 1e-4,
|
51 |
+
"discriminator_learning_rate": 1e-4
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"Log": {
|
55 |
+
"save_every": 50,
|
56 |
+
"print_every": 200,
|
57 |
+
"name": "LS3DCG"
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
config/body_pixel.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config_root_path": "/is/cluster/scratch/hyi/ExpressiveBody/SMPLifyX4/scripts",
|
3 |
+
"dataset_load_mode": "pickle",
|
4 |
+
"store_file_path": "store.pkl",
|
5 |
+
"smplx_npz_path": "visualise/smplx_model/SMPLX_NEUTRAL_2020.npz",
|
6 |
+
"extra_joint_path": "visualise/smplx_model/smplx_extra_joints.yaml",
|
7 |
+
"j14_regressor_path": "visualise/smplx_model/SMPLX_to_J14.pkl",
|
8 |
+
"param": {
|
9 |
+
"w_j": 1,
|
10 |
+
"w_b": 1,
|
11 |
+
"w_h": 1
|
12 |
+
},
|
13 |
+
"Data": {
|
14 |
+
"data_root": "../ExpressiveWholeBodyDatasetv1.0/",
|
15 |
+
"pklname": "_3d_mfcc.pkl",
|
16 |
+
"whole_video": false,
|
17 |
+
"pose": {
|
18 |
+
"normalization": false,
|
19 |
+
"convert_to_6d": false,
|
20 |
+
"norm_method": "all",
|
21 |
+
"augmentation": false,
|
22 |
+
"generate_length": 88,
|
23 |
+
"pre_pose_length": 0,
|
24 |
+
"pose_dim": 99,
|
25 |
+
"expression": true
|
26 |
+
},
|
27 |
+
"aud": {
|
28 |
+
"feat_method": "mfcc",
|
29 |
+
"aud_feat_dim": 64,
|
30 |
+
"aud_feat_win_size": null,
|
31 |
+
"context_info": false
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"Model": {
|
35 |
+
"model_type": "body",
|
36 |
+
"model_name": "s2g_body_pixel",
|
37 |
+
"composition": true,
|
38 |
+
"code_num": 2048,
|
39 |
+
"bh_model": true,
|
40 |
+
"AudioOpt": "Adam",
|
41 |
+
"encoder_choice": "mfcc",
|
42 |
+
"gan": false,
|
43 |
+
"vq_path": "./experiments/2022-10-31-smplx_S2G-body-vq-3d/ckpt-99.pth"
|
44 |
+
},
|
45 |
+
"DataLoader": {
|
46 |
+
"batch_size": 128,
|
47 |
+
"num_workers": 0
|
48 |
+
},
|
49 |
+
"Train": {
|
50 |
+
"epochs": 100,
|
51 |
+
"max_gradient_norm": 5,
|
52 |
+
"learning_rate": {
|
53 |
+
"generator_learning_rate": 1e-4,
|
54 |
+
"discriminator_learning_rate": 1e-4
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"Log": {
|
58 |
+
"save_every": 50,
|
59 |
+
"print_every": 200,
|
60 |
+
"name": "body-pixel2"
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
config/body_vq.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config_root_path": "/is/cluster/scratch/hyi/ExpressiveBody/SMPLifyX4/scripts",
|
3 |
+
"dataset_load_mode": "pickle",
|
4 |
+
"store_file_path": "store.pkl",
|
5 |
+
"smplx_npz_path": "visualise/smplx_model/SMPLX_NEUTRAL_2020.npz",
|
6 |
+
"extra_joint_path": "visualise/smplx_model/smplx_extra_joints.yaml",
|
7 |
+
"j14_regressor_path": "visualise/smplx_model/SMPLX_to_J14.pkl",
|
8 |
+
"param": {
|
9 |
+
"w_j": 1,
|
10 |
+
"w_b": 1,
|
11 |
+
"w_h": 1
|
12 |
+
},
|
13 |
+
"Data": {
|
14 |
+
"data_root": "../expressive_body-V0.7/",
|
15 |
+
"pklname": "_3d_mfcc.pkl",
|
16 |
+
"whole_video": false,
|
17 |
+
"pose": {
|
18 |
+
"normalization": false,
|
19 |
+
"convert_to_6d": false,
|
20 |
+
"norm_method": "all",
|
21 |
+
"augmentation": false,
|
22 |
+
"generate_length": 88,
|
23 |
+
"pre_pose_length": 0,
|
24 |
+
"pose_dim": 99,
|
25 |
+
"expression": true
|
26 |
+
},
|
27 |
+
"aud": {
|
28 |
+
"feat_method": "mfcc",
|
29 |
+
"aud_feat_dim": 64,
|
30 |
+
"aud_feat_win_size": null,
|
31 |
+
"context_info": false
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"Model": {
|
35 |
+
"model_type": "body",
|
36 |
+
"model_name": "s2g_body_vq",
|
37 |
+
"composition": false,
|
38 |
+
"code_num": 2048,
|
39 |
+
"bh_model": true,
|
40 |
+
"AudioOpt": "Adam",
|
41 |
+
"encoder_choice": "mfcc",
|
42 |
+
"gan": false
|
43 |
+
},
|
44 |
+
"DataLoader": {
|
45 |
+
"batch_size": 128,
|
46 |
+
"num_workers": 0
|
47 |
+
},
|
48 |
+
"Train": {
|
49 |
+
"epochs": 100,
|
50 |
+
"max_gradient_norm": 5,
|
51 |
+
"learning_rate": {
|
52 |
+
"generator_learning_rate": 1e-4,
|
53 |
+
"discriminator_learning_rate": 1e-4
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"Log": {
|
57 |
+
"save_every": 50,
|
58 |
+
"print_every": 200,
|
59 |
+
"name": "test"
|
60 |
+
}
|
61 |
+
}
|
62 |
+
|
config/face.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config_root_path": "/is/cluster/scratch/hyi/ExpressiveBody/SMPLifyX4/scripts",
|
3 |
+
"dataset_load_mode": "json",
|
4 |
+
"store_file_path": "store.pkl",
|
5 |
+
"smplx_npz_path": "visualise/smplx_model/SMPLX_NEUTRAL_2020.npz",
|
6 |
+
"extra_joint_path": "visualise/smplx_model/smplx_extra_joints.yaml",
|
7 |
+
"j14_regressor_path": "visualise/smplx_model/SMPLX_to_J14.pkl",
|
8 |
+
"param": {
|
9 |
+
"w_j": 1,
|
10 |
+
"w_b": 1,
|
11 |
+
"w_h": 1
|
12 |
+
},
|
13 |
+
"Data": {
|
14 |
+
"data_root": "../ExpressiveWholeBodyDatasetv1.0/",
|
15 |
+
"pklname": "_3d_wv2.pkl",
|
16 |
+
"whole_video": true,
|
17 |
+
"pose": {
|
18 |
+
"normalization": false,
|
19 |
+
"convert_to_6d": false,
|
20 |
+
"norm_method": "all",
|
21 |
+
"augmentation": false,
|
22 |
+
"generate_length": 88,
|
23 |
+
"pre_pose_length": 0,
|
24 |
+
"pose_dim": 99,
|
25 |
+
"expression": true
|
26 |
+
},
|
27 |
+
"aud": {
|
28 |
+
"feat_method": "mfcc",
|
29 |
+
"aud_feat_dim": 64,
|
30 |
+
"aud_feat_win_size": null,
|
31 |
+
"context_info": false
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"Model": {
|
35 |
+
"model_type": "face",
|
36 |
+
"model_name": "s2g_face",
|
37 |
+
"AudioOpt": "SGD",
|
38 |
+
"encoder_choice": "faceformer",
|
39 |
+
"gan": false
|
40 |
+
},
|
41 |
+
"DataLoader": {
|
42 |
+
"batch_size": 1,
|
43 |
+
"num_workers": 0
|
44 |
+
},
|
45 |
+
"Train": {
|
46 |
+
"epochs": 100,
|
47 |
+
"max_gradient_norm": 5,
|
48 |
+
"learning_rate": {
|
49 |
+
"generator_learning_rate": 1e-4,
|
50 |
+
"discriminator_learning_rate": 1e-4
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"Log": {
|
54 |
+
"save_every": 50,
|
55 |
+
"print_every": 1000,
|
56 |
+
"name": "face"
|
57 |
+
}
|
58 |
+
}
|
59 |
+
|
data_utils/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# from .dataloader_csv import MultiVidData as csv_data
|
2 |
+
from .dataloader_torch import MultiVidData as torch_data
|
3 |
+
from .utils import get_melspec, get_mfcc, get_mfcc_old, get_mfcc_psf, get_mfcc_psf_min, get_mfcc_ta
|
data_utils/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (375 Bytes). View file
|
|
data_utils/__pycache__/consts.cpython-37.pyc
ADDED
Binary file (92.7 kB). View file
|
|
data_utils/__pycache__/dataloader_torch.cpython-37.pyc
ADDED
Binary file (5.31 kB). View file
|
|
data_utils/__pycache__/lower_body.cpython-37.pyc
ADDED
Binary file (3.91 kB). View file
|
|
data_utils/__pycache__/mesh_dataset.cpython-37.pyc
ADDED
Binary file (7.9 kB). View file
|
|
data_utils/__pycache__/rotation_conversion.cpython-37.pyc
ADDED
Binary file (16.4 kB). View file
|
|
data_utils/__pycache__/utils.cpython-37.pyc
ADDED
Binary file (7.77 kB). View file
|
|
data_utils/axis2matrix.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import math
|
3 |
+
import scipy.linalg as linalg
|
4 |
+
|
5 |
+
|
6 |
+
def rotate_mat(axis, radian):
|
7 |
+
|
8 |
+
a = np.cross(np.eye(3), axis / linalg.norm(axis) * radian)
|
9 |
+
|
10 |
+
rot_matrix = linalg.expm(a)
|
11 |
+
|
12 |
+
return rot_matrix
|
13 |
+
|
14 |
+
def aaa2mat(axis, sin, cos):
|
15 |
+
i = np.eye(3)
|
16 |
+
nnt = np.dot(axis.T, axis)
|
17 |
+
s = np.asarray([[0, -axis[0,2], axis[0,1]],
|
18 |
+
[axis[0,2], 0, -axis[0,0]],
|
19 |
+
[-axis[0,1], axis[0,0], 0]])
|
20 |
+
r = cos * i + (1-cos)*nnt +sin * s
|
21 |
+
return r
|
22 |
+
|
23 |
+
rand_axis = np.asarray([[1,0,0]])
|
24 |
+
#旋转角度
|
25 |
+
r = math.pi/2
|
26 |
+
#返回旋转矩阵
|
27 |
+
rot_matrix = rotate_mat(rand_axis, r)
|
28 |
+
r2 = aaa2mat(rand_axis, np.sin(r), np.cos(r))
|
29 |
+
print(rot_matrix)
|
data_utils/consts.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data_utils/dataloader_torch.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
sys.path.append(os.getcwd())
|
4 |
+
import os
|
5 |
+
from tqdm import tqdm
|
6 |
+
from data_utils.utils import *
|
7 |
+
import torch.utils.data as data
|
8 |
+
from data_utils.mesh_dataset import SmplxDataset
|
9 |
+
from transformers import Wav2Vec2Processor
|
10 |
+
|
11 |
+
|
12 |
+
class MultiVidData():
|
13 |
+
def __init__(self,
|
14 |
+
data_root,
|
15 |
+
speakers,
|
16 |
+
split='train',
|
17 |
+
limbscaling=False,
|
18 |
+
normalization=False,
|
19 |
+
norm_method='new',
|
20 |
+
split_trans_zero=False,
|
21 |
+
num_frames=25,
|
22 |
+
num_pre_frames=25,
|
23 |
+
num_generate_length=None,
|
24 |
+
aud_feat_win_size=None,
|
25 |
+
aud_feat_dim=64,
|
26 |
+
feat_method='mel_spec',
|
27 |
+
context_info=False,
|
28 |
+
smplx=False,
|
29 |
+
audio_sr=16000,
|
30 |
+
convert_to_6d=False,
|
31 |
+
expression=False,
|
32 |
+
config=None
|
33 |
+
):
|
34 |
+
self.data_root = data_root
|
35 |
+
self.speakers = speakers
|
36 |
+
self.split = split
|
37 |
+
if split == 'pre':
|
38 |
+
self.split = 'train'
|
39 |
+
self.norm_method=norm_method
|
40 |
+
self.normalization = normalization
|
41 |
+
self.limbscaling = limbscaling
|
42 |
+
self.convert_to_6d = convert_to_6d
|
43 |
+
self.num_frames=num_frames
|
44 |
+
self.num_pre_frames=num_pre_frames
|
45 |
+
if num_generate_length is None:
|
46 |
+
self.num_generate_length = num_frames
|
47 |
+
else:
|
48 |
+
self.num_generate_length = num_generate_length
|
49 |
+
self.split_trans_zero=split_trans_zero
|
50 |
+
|
51 |
+
dataset = SmplxDataset
|
52 |
+
|
53 |
+
if self.split_trans_zero:
|
54 |
+
self.trans_dataset_list = []
|
55 |
+
self.zero_dataset_list = []
|
56 |
+
else:
|
57 |
+
self.all_dataset_list = []
|
58 |
+
self.dataset={}
|
59 |
+
self.complete_data=[]
|
60 |
+
self.config=config
|
61 |
+
load_mode=self.config.dataset_load_mode
|
62 |
+
|
63 |
+
######################load with pickle file
|
64 |
+
if load_mode=='pickle':
|
65 |
+
import pickle
|
66 |
+
import subprocess
|
67 |
+
|
68 |
+
# store_file_path='/tmp/store.pkl'
|
69 |
+
# cp /is/cluster/scratch/hyi/ExpressiveBody/SMPLifyX4/scripts/store.pkl /tmp/store.pkl
|
70 |
+
# subprocess.run(f'cp /is/cluster/scratch/hyi/ExpressiveBody/SMPLifyX4/scripts/store.pkl {store_file_path}',shell=True)
|
71 |
+
|
72 |
+
# f = open(self.config.store_file_path, 'rb+')
|
73 |
+
f = open(self.split+config.Data.pklname, 'rb+')
|
74 |
+
self.dataset=pickle.load(f)
|
75 |
+
f.close()
|
76 |
+
for key in self.dataset:
|
77 |
+
self.complete_data.append(self.dataset[key].complete_data)
|
78 |
+
######################load with pickle file
|
79 |
+
|
80 |
+
######################load with a csv file
|
81 |
+
elif load_mode=='csv':
|
82 |
+
|
83 |
+
# 这里从我的一个code文件夹导入的,后续再完善进来
|
84 |
+
try:
|
85 |
+
sys.path.append(self.config.config_root_path)
|
86 |
+
from config import config_path
|
87 |
+
from csv_parser import csv_parse
|
88 |
+
|
89 |
+
except ImportError as e:
|
90 |
+
print(f'err: {e}')
|
91 |
+
raise ImportError('config root path error...')
|
92 |
+
|
93 |
+
|
94 |
+
for speaker_name in self.speakers:
|
95 |
+
# df_intervals=pd.read_csv(self.config.voca_csv_file_path)
|
96 |
+
df_intervals=None
|
97 |
+
df_intervals=df_intervals[df_intervals['speaker']==speaker_name]
|
98 |
+
df_intervals = df_intervals[df_intervals['dataset'] == self.split]
|
99 |
+
|
100 |
+
print(f'speaker {speaker_name} train interval length: {len(df_intervals)}')
|
101 |
+
for iter_index, (_, interval) in tqdm(
|
102 |
+
(enumerate(df_intervals.iterrows())),desc=f'load {speaker_name}'
|
103 |
+
):
|
104 |
+
|
105 |
+
(
|
106 |
+
interval_index,
|
107 |
+
interval_speaker,
|
108 |
+
interval_video_fn,
|
109 |
+
interval_id,
|
110 |
+
|
111 |
+
start_time,
|
112 |
+
end_time,
|
113 |
+
duration_time,
|
114 |
+
start_time_10,
|
115 |
+
over_flow_flag,
|
116 |
+
short_dur_flag,
|
117 |
+
|
118 |
+
big_video_dir,
|
119 |
+
small_video_dir_name,
|
120 |
+
speaker_video_path,
|
121 |
+
|
122 |
+
voca_basename,
|
123 |
+
json_basename,
|
124 |
+
wav_basename,
|
125 |
+
voca_top_clip_path,
|
126 |
+
voca_json_clip_path,
|
127 |
+
voca_wav_clip_path,
|
128 |
+
|
129 |
+
audio_output_fn,
|
130 |
+
image_output_path,
|
131 |
+
pifpaf_output_path,
|
132 |
+
mp_output_path,
|
133 |
+
op_output_path,
|
134 |
+
deca_output_path,
|
135 |
+
pixie_output_path,
|
136 |
+
cam_output_path,
|
137 |
+
ours_output_path,
|
138 |
+
merge_output_path,
|
139 |
+
multi_output_path,
|
140 |
+
gt_output_path,
|
141 |
+
ours_images_path,
|
142 |
+
pkl_fil_path,
|
143 |
+
)=csv_parse(interval)
|
144 |
+
|
145 |
+
if not os.path.exists(pkl_fil_path) or not os.path.exists(audio_output_fn):
|
146 |
+
continue
|
147 |
+
|
148 |
+
key=f'{interval_video_fn}/{small_video_dir_name}'
|
149 |
+
self.dataset[key] = dataset(
|
150 |
+
data_root=pkl_fil_path,
|
151 |
+
speaker=speaker_name,
|
152 |
+
audio_fn=audio_output_fn,
|
153 |
+
audio_sr=audio_sr,
|
154 |
+
fps=num_frames,
|
155 |
+
feat_method=feat_method,
|
156 |
+
audio_feat_dim=aud_feat_dim,
|
157 |
+
train=(self.split == 'train'),
|
158 |
+
load_all=True,
|
159 |
+
split_trans_zero=self.split_trans_zero,
|
160 |
+
limbscaling=self.limbscaling,
|
161 |
+
num_frames=self.num_frames,
|
162 |
+
num_pre_frames=self.num_pre_frames,
|
163 |
+
num_generate_length=self.num_generate_length,
|
164 |
+
audio_feat_win_size=aud_feat_win_size,
|
165 |
+
context_info=context_info,
|
166 |
+
convert_to_6d=convert_to_6d,
|
167 |
+
expression=expression,
|
168 |
+
config=self.config
|
169 |
+
)
|
170 |
+
self.complete_data.append(self.dataset[key].complete_data)
|
171 |
+
######################load with a csv file
|
172 |
+
|
173 |
+
######################origin load method
|
174 |
+
elif load_mode=='json':
|
175 |
+
|
176 |
+
# if self.split == 'train':
|
177 |
+
# import pickle
|
178 |
+
# f = open('store.pkl', 'rb+')
|
179 |
+
# self.dataset=pickle.load(f)
|
180 |
+
# f.close()
|
181 |
+
# for key in self.dataset:
|
182 |
+
# self.complete_data.append(self.dataset[key].complete_data)
|
183 |
+
# else:https://pytorch-tutorial-assets.s3.amazonaws.com/VOiCES_devkit/source-16k/train/sp0307/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav
|
184 |
+
# if config.Model.model_type == 'face':
|
185 |
+
am = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-phoneme")
|
186 |
+
am_sr = 16000
|
187 |
+
# else:
|
188 |
+
# am, am_sr = None, None
|
189 |
+
for speaker_name in self.speakers:
|
190 |
+
speaker_root = os.path.join(self.data_root, speaker_name)
|
191 |
+
|
192 |
+
videos=[v for v in os.listdir(speaker_root) ]
|
193 |
+
print(videos)
|
194 |
+
|
195 |
+
haode = huaide = 0
|
196 |
+
|
197 |
+
for vid in tqdm(videos, desc="Processing training data of {}......".format(speaker_name)):
|
198 |
+
source_vid=vid
|
199 |
+
# vid_pth=os.path.join(speaker_root, source_vid, 'images/half', self.split)
|
200 |
+
vid_pth = os.path.join(speaker_root, source_vid, self.split)
|
201 |
+
if smplx == 'pose':
|
202 |
+
seqs = [s for s in os.listdir(vid_pth) if (s.startswith('clip'))]
|
203 |
+
else:
|
204 |
+
try:
|
205 |
+
seqs = [s for s in os.listdir(vid_pth)]
|
206 |
+
except:
|
207 |
+
continue
|
208 |
+
|
209 |
+
for s in seqs:
|
210 |
+
seq_root=os.path.join(vid_pth, s)
|
211 |
+
key = seq_root # correspond to clip******
|
212 |
+
audio_fname = os.path.join(speaker_root, source_vid, self.split, s, '%s.wav' % (s))
|
213 |
+
motion_fname = os.path.join(speaker_root, source_vid, self.split, s, '%s.pkl' % (s))
|
214 |
+
if not os.path.isfile(audio_fname) or not os.path.isfile(motion_fname):
|
215 |
+
huaide = huaide + 1
|
216 |
+
continue
|
217 |
+
|
218 |
+
self.dataset[key]=dataset(
|
219 |
+
data_root=seq_root,
|
220 |
+
speaker=speaker_name,
|
221 |
+
motion_fn=motion_fname,
|
222 |
+
audio_fn=audio_fname,
|
223 |
+
audio_sr=audio_sr,
|
224 |
+
fps=num_frames,
|
225 |
+
feat_method=feat_method,
|
226 |
+
audio_feat_dim=aud_feat_dim,
|
227 |
+
train=(self.split=='train'),
|
228 |
+
load_all=True,
|
229 |
+
split_trans_zero=self.split_trans_zero,
|
230 |
+
limbscaling=self.limbscaling,
|
231 |
+
num_frames=self.num_frames,
|
232 |
+
num_pre_frames=self.num_pre_frames,
|
233 |
+
num_generate_length=self.num_generate_length,
|
234 |
+
audio_feat_win_size=aud_feat_win_size,
|
235 |
+
context_info=context_info,
|
236 |
+
convert_to_6d=convert_to_6d,
|
237 |
+
expression=expression,
|
238 |
+
config=self.config,
|
239 |
+
am=am,
|
240 |
+
am_sr=am_sr,
|
241 |
+
whole_video=config.Data.whole_video
|
242 |
+
)
|
243 |
+
self.complete_data.append(self.dataset[key].complete_data)
|
244 |
+
haode = haode + 1
|
245 |
+
print("huaide:{}, haode:{}".format(huaide, haode))
|
246 |
+
import pickle
|
247 |
+
|
248 |
+
f = open(self.split+config.Data.pklname, 'wb')
|
249 |
+
pickle.dump(self.dataset, f)
|
250 |
+
f.close()
|
251 |
+
######################origin load method
|
252 |
+
|
253 |
+
self.complete_data=np.concatenate(self.complete_data, axis=0)
|
254 |
+
|
255 |
+
# assert self.complete_data.shape[-1] == (12+21+21)*2
|
256 |
+
self.normalize_stats = {}
|
257 |
+
|
258 |
+
self.data_mean = None
|
259 |
+
self.data_std = None
|
260 |
+
|
261 |
+
def get_dataset(self):
|
262 |
+
self.normalize_stats['mean'] = self.data_mean
|
263 |
+
self.normalize_stats['std'] = self.data_std
|
264 |
+
|
265 |
+
for key in list(self.dataset.keys()):
|
266 |
+
if self.dataset[key].complete_data.shape[0] < self.num_generate_length:
|
267 |
+
continue
|
268 |
+
self.dataset[key].num_generate_length = self.num_generate_length
|
269 |
+
self.dataset[key].get_dataset(self.normalization, self.normalize_stats, self.split)
|
270 |
+
self.all_dataset_list.append(self.dataset[key].all_dataset)
|
271 |
+
|
272 |
+
if self.split_trans_zero:
|
273 |
+
self.trans_dataset = data.ConcatDataset(self.trans_dataset_list)
|
274 |
+
self.zero_dataset = data.ConcatDataset(self.zero_dataset_list)
|
275 |
+
else:
|
276 |
+
self.all_dataset = data.ConcatDataset(self.all_dataset_list)
|
277 |
+
|
278 |
+
|
279 |
+
|
data_utils/dataset_preprocess.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
from tqdm import tqdm
|
4 |
+
import shutil
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
import librosa
|
8 |
+
import random
|
9 |
+
|
10 |
+
speakers = ['seth', 'conan', 'oliver', 'chemistry']
|
11 |
+
data_root = "../ExpressiveWholeBodyDatasetv1.0/"
|
12 |
+
split = 'train'
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
def split_list(full_list,shuffle=False,ratio=0.2):
|
17 |
+
n_total = len(full_list)
|
18 |
+
offset_0 = int(n_total * ratio)
|
19 |
+
offset_1 = int(n_total * ratio * 2)
|
20 |
+
if n_total==0 or offset_1<1:
|
21 |
+
return [],full_list
|
22 |
+
if shuffle:
|
23 |
+
random.shuffle(full_list)
|
24 |
+
sublist_0 = full_list[:offset_0]
|
25 |
+
sublist_1 = full_list[offset_0:offset_1]
|
26 |
+
sublist_2 = full_list[offset_1:]
|
27 |
+
return sublist_0, sublist_1, sublist_2
|
28 |
+
|
29 |
+
|
30 |
+
def moveto(list, file):
|
31 |
+
for f in list:
|
32 |
+
before, after = '/'.join(f.split('/')[:-1]), f.split('/')[-1]
|
33 |
+
new_path = os.path.join(before, file)
|
34 |
+
new_path = os.path.join(new_path, after)
|
35 |
+
# os.makedirs(new_path)
|
36 |
+
# os.path.isdir(new_path)
|
37 |
+
# shutil.move(f, new_path)
|
38 |
+
|
39 |
+
#转移到新目录
|
40 |
+
shutil.copytree(f, new_path)
|
41 |
+
#删除原train里的文件
|
42 |
+
shutil.rmtree(f)
|
43 |
+
return None
|
44 |
+
|
45 |
+
|
46 |
+
def read_pkl(data):
|
47 |
+
betas = np.array(data['betas'])
|
48 |
+
|
49 |
+
jaw_pose = np.array(data['jaw_pose'])
|
50 |
+
leye_pose = np.array(data['leye_pose'])
|
51 |
+
reye_pose = np.array(data['reye_pose'])
|
52 |
+
global_orient = np.array(data['global_orient']).squeeze()
|
53 |
+
body_pose = np.array(data['body_pose_axis'])
|
54 |
+
left_hand_pose = np.array(data['left_hand_pose'])
|
55 |
+
right_hand_pose = np.array(data['right_hand_pose'])
|
56 |
+
|
57 |
+
full_body = np.concatenate(
|
58 |
+
(jaw_pose, leye_pose, reye_pose, global_orient, body_pose, left_hand_pose, right_hand_pose), axis=1)
|
59 |
+
|
60 |
+
expression = np.array(data['expression'])
|
61 |
+
full_body = np.concatenate((full_body, expression), axis=1)
|
62 |
+
|
63 |
+
if (full_body.shape[0] < 90) or (torch.isnan(torch.from_numpy(full_body)).sum() > 0):
|
64 |
+
return 1
|
65 |
+
else:
|
66 |
+
return 0
|
67 |
+
|
68 |
+
|
69 |
+
for speaker_name in speakers:
|
70 |
+
speaker_root = os.path.join(data_root, speaker_name)
|
71 |
+
|
72 |
+
videos = [v for v in os.listdir(speaker_root)]
|
73 |
+
print(videos)
|
74 |
+
|
75 |
+
haode = huaide = 0
|
76 |
+
total_seqs = []
|
77 |
+
|
78 |
+
for vid in tqdm(videos, desc="Processing training data of {}......".format(speaker_name)):
|
79 |
+
# for vid in videos:
|
80 |
+
source_vid = vid
|
81 |
+
vid_pth = os.path.join(speaker_root, source_vid)
|
82 |
+
# vid_pth = os.path.join(speaker_root, source_vid, 'images/half', split)
|
83 |
+
t = os.path.join(speaker_root, source_vid, 'test')
|
84 |
+
v = os.path.join(speaker_root, source_vid, 'val')
|
85 |
+
|
86 |
+
# if os.path.exists(t):
|
87 |
+
# shutil.rmtree(t)
|
88 |
+
# if os.path.exists(v):
|
89 |
+
# shutil.rmtree(v)
|
90 |
+
try:
|
91 |
+
seqs = [s for s in os.listdir(vid_pth)]
|
92 |
+
except:
|
93 |
+
continue
|
94 |
+
# if len(seqs) == 0:
|
95 |
+
# shutil.rmtree(os.path.join(speaker_root, source_vid))
|
96 |
+
# None
|
97 |
+
for s in seqs:
|
98 |
+
quality = 0
|
99 |
+
total_seqs.append(os.path.join(vid_pth,s))
|
100 |
+
seq_root = os.path.join(vid_pth, s)
|
101 |
+
key = seq_root # correspond to clip******
|
102 |
+
audio_fname = os.path.join(speaker_root, source_vid, s, '%s.wav' % (s))
|
103 |
+
|
104 |
+
# delete the data without audio or the audio file could not be read
|
105 |
+
if os.path.isfile(audio_fname):
|
106 |
+
try:
|
107 |
+
audio = librosa.load(audio_fname)
|
108 |
+
except:
|
109 |
+
# print(key)
|
110 |
+
shutil.rmtree(key)
|
111 |
+
huaide = huaide + 1
|
112 |
+
continue
|
113 |
+
else:
|
114 |
+
huaide = huaide + 1
|
115 |
+
# print(key)
|
116 |
+
shutil.rmtree(key)
|
117 |
+
continue
|
118 |
+
|
119 |
+
# check motion file
|
120 |
+
motion_fname = os.path.join(speaker_root, source_vid, s, '%s.pkl' % (s))
|
121 |
+
try:
|
122 |
+
f = open(motion_fname, 'rb+')
|
123 |
+
except:
|
124 |
+
shutil.rmtree(key)
|
125 |
+
huaide = huaide + 1
|
126 |
+
continue
|
127 |
+
|
128 |
+
data = pickle.load(f)
|
129 |
+
w = read_pkl(data)
|
130 |
+
f.close()
|
131 |
+
quality = quality + w
|
132 |
+
|
133 |
+
if w == 1:
|
134 |
+
shutil.rmtree(key)
|
135 |
+
# print(key)
|
136 |
+
huaide = huaide + 1
|
137 |
+
continue
|
138 |
+
|
139 |
+
haode = haode + 1
|
140 |
+
|
141 |
+
print("huaide:{}, haode:{}, total_seqs:{}".format(huaide, haode, total_seqs.__len__()))
|
142 |
+
|
143 |
+
for speaker_name in speakers:
|
144 |
+
speaker_root = os.path.join(data_root, speaker_name)
|
145 |
+
|
146 |
+
videos = [v for v in os.listdir(speaker_root)]
|
147 |
+
print(videos)
|
148 |
+
|
149 |
+
haode = huaide = 0
|
150 |
+
total_seqs = []
|
151 |
+
|
152 |
+
for vid in tqdm(videos, desc="Processing training data of {}......".format(speaker_name)):
|
153 |
+
# for vid in videos:
|
154 |
+
source_vid = vid
|
155 |
+
vid_pth = os.path.join(speaker_root, source_vid)
|
156 |
+
try:
|
157 |
+
seqs = [s for s in os.listdir(vid_pth)]
|
158 |
+
except:
|
159 |
+
continue
|
160 |
+
for s in seqs:
|
161 |
+
quality = 0
|
162 |
+
total_seqs.append(os.path.join(vid_pth, s))
|
163 |
+
print("total_seqs:{}".format(total_seqs.__len__()))
|
164 |
+
# split the dataset
|
165 |
+
test_list, val_list, train_list = split_list(total_seqs, True, 0.1)
|
166 |
+
print(len(test_list), len(val_list), len(train_list))
|
167 |
+
moveto(train_list, 'train')
|
168 |
+
moveto(test_list, 'test')
|
169 |
+
moveto(val_list, 'val')
|
170 |
+
|
data_utils/get_j.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def to3d(poses, config):
|
5 |
+
if config.Data.pose.convert_to_6d:
|
6 |
+
if config.Data.pose.expression:
|
7 |
+
poses_exp = poses[:, -100:]
|
8 |
+
poses = poses[:, :-100]
|
9 |
+
|
10 |
+
poses = poses.reshape(poses.shape[0], -1, 5)
|
11 |
+
sin, cos = poses[:, :, 3], poses[:, :, 4]
|
12 |
+
pose_angle = torch.atan2(sin, cos)
|
13 |
+
poses = (poses[:, :, :3] * pose_angle.unsqueeze(dim=-1)).reshape(poses.shape[0], -1)
|
14 |
+
|
15 |
+
if config.Data.pose.expression:
|
16 |
+
poses = torch.cat([poses, poses_exp], dim=-1)
|
17 |
+
return poses
|
18 |
+
|
19 |
+
|
20 |
+
def get_joint(smplx_model, betas, pred):
|
21 |
+
joint = smplx_model(betas=betas.repeat(pred.shape[0], 1),
|
22 |
+
expression=pred[:, 165:265],
|
23 |
+
jaw_pose=pred[:, 0:3],
|
24 |
+
leye_pose=pred[:, 3:6],
|
25 |
+
reye_pose=pred[:, 6:9],
|
26 |
+
global_orient=pred[:, 9:12],
|
27 |
+
body_pose=pred[:, 12:75],
|
28 |
+
left_hand_pose=pred[:, 75:120],
|
29 |
+
right_hand_pose=pred[:, 120:165],
|
30 |
+
return_verts=True)['joints']
|
31 |
+
return joint
|
32 |
+
|
33 |
+
|
34 |
+
def get_joints(smplx_model, betas, pred):
|
35 |
+
if len(pred.shape) == 3:
|
36 |
+
B = pred.shape[0]
|
37 |
+
x = 4 if B>= 4 else B
|
38 |
+
T = pred.shape[1]
|
39 |
+
pred = pred.reshape(-1, 265)
|
40 |
+
smplx_model.batch_size = L = T * x
|
41 |
+
|
42 |
+
times = pred.shape[0] // smplx_model.batch_size
|
43 |
+
joints = []
|
44 |
+
for i in range(times):
|
45 |
+
joints.append(get_joint(smplx_model, betas, pred[i*L:(i+1)*L]))
|
46 |
+
joints = torch.cat(joints, dim=0)
|
47 |
+
joints = joints.reshape(B, T, -1, 3)
|
48 |
+
else:
|
49 |
+
smplx_model.batch_size = pred.shape[0]
|
50 |
+
joints = get_joint(smplx_model, betas, pred)
|
51 |
+
return joints
|
data_utils/hand_component.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data_utils/lower_body.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
|
4 |
+
lower_pose = torch.tensor(
|
5 |
+
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0747, -0.0158, -0.0152, -1.1826512813568115, 0.23866955935955048,
|
6 |
+
0.15146760642528534, -1.2604516744613647, -0.3160211145877838,
|
7 |
+
-0.1603458970785141, 1.1654603481292725, 0.0, 0.0, 1.2521806955337524, 0.041598282754421234, -0.06312154978513718,
|
8 |
+
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
|
9 |
+
lower_pose_stand = torch.tensor([
|
10 |
+
8.9759e-04, 7.1074e-04, -5.9163e-06, 8.9759e-04, 7.1074e-04, -5.9163e-06,
|
11 |
+
3.0747, -0.0158, -0.0152,
|
12 |
+
-3.6665e-01, -8.8455e-03, 1.6113e-01, -3.6665e-01, -8.8455e-03, 1.6113e-01,
|
13 |
+
-3.9716e-01, -4.0229e-02, -1.2637e-01,
|
14 |
+
7.9163e-01, 6.8519e-02, -1.5091e-01, 7.9163e-01, 6.8519e-02, -1.5091e-01,
|
15 |
+
7.8632e-01, -4.3810e-02, 1.4375e-02,
|
16 |
+
-1.0675e-01, 1.2635e-01, 1.6711e-02, -1.0675e-01, 1.2635e-01, 1.6711e-02, ])
|
17 |
+
# lower_pose_stand = torch.tensor(
|
18 |
+
# [6.4919e-02, 3.3018e-02, 1.7485e-02, 8.9759e-04, 7.1074e-04, -5.9163e-06,
|
19 |
+
# 3.0747, -0.0158, -0.0152,
|
20 |
+
# -3.3633e+00, -9.3915e-02, 3.0996e-01, -3.6665e-01, -8.8455e-03, 1.6113e-01,
|
21 |
+
# 1.1654603481292725, 0.0, 0.0,
|
22 |
+
# 4.4167e-01, 6.7183e-03, -3.6379e-03, 7.9163e-01, 6.8519e-02, -1.5091e-01,
|
23 |
+
# 0.0, 0.0, 0.0,
|
24 |
+
# 2.2910e-02, -2.4797e-02, -5.5657e-03, -1.0675e-01, 1.2635e-01, 1.6711e-02,])
|
25 |
+
lower_body = [0, 1, 3, 4, 6, 7, 9, 10]
|
26 |
+
count_part = [6, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
|
27 |
+
29, 30, 31, 32, 33, 34, 35, 36, 37,
|
28 |
+
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]
|
29 |
+
fix_index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
|
30 |
+
29,
|
31 |
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
|
32 |
+
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
33 |
+
65, 66, 67, 68, 69, 70, 71, 72, 73, 74]
|
34 |
+
all_index = np.ones(275)
|
35 |
+
all_index[fix_index] = 0
|
36 |
+
c_index = []
|
37 |
+
i = 0
|
38 |
+
for num in all_index:
|
39 |
+
if num == 1:
|
40 |
+
c_index.append(i)
|
41 |
+
i = i + 1
|
42 |
+
c_index = np.asarray(c_index)
|
43 |
+
|
44 |
+
fix_index_3d = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
45 |
+
21, 22, 23, 24, 25, 26,
|
46 |
+
30, 31, 32, 33, 34, 35,
|
47 |
+
45, 46, 47, 48, 49, 50]
|
48 |
+
all_index_3d = np.ones(165)
|
49 |
+
all_index_3d[fix_index_3d] = 0
|
50 |
+
c_index_3d = []
|
51 |
+
i = 0
|
52 |
+
for num in all_index_3d:
|
53 |
+
if num == 1:
|
54 |
+
c_index_3d.append(i)
|
55 |
+
i = i + 1
|
56 |
+
c_index_3d = np.asarray(c_index_3d)
|
57 |
+
|
58 |
+
c_index_6d = []
|
59 |
+
i = 0
|
60 |
+
for num in all_index_3d:
|
61 |
+
if num == 1:
|
62 |
+
c_index_6d.append(2*i)
|
63 |
+
c_index_6d.append(2 * i + 1)
|
64 |
+
i = i + 1
|
65 |
+
c_index_6d = np.asarray(c_index_6d)
|
66 |
+
|
67 |
+
|
68 |
+
def part2full(input, stand=False):
|
69 |
+
if stand:
|
70 |
+
# lp = lower_pose_stand.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device)
|
71 |
+
lp = torch.zeros_like(lower_pose)
|
72 |
+
lp[6:9] = torch.tensor([3.0747, -0.0158, -0.0152])
|
73 |
+
lp = lp.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device)
|
74 |
+
else:
|
75 |
+
lp = lower_pose.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device)
|
76 |
+
|
77 |
+
input = torch.cat([input[:, :3],
|
78 |
+
lp[:, :15],
|
79 |
+
input[:, 3:6],
|
80 |
+
lp[:, 15:21],
|
81 |
+
input[:, 6:9],
|
82 |
+
lp[:, 21:27],
|
83 |
+
input[:, 9:12],
|
84 |
+
lp[:, 27:],
|
85 |
+
input[:, 12:]]
|
86 |
+
, dim=1)
|
87 |
+
return input
|
88 |
+
|
89 |
+
|
90 |
+
def pred2poses(input, gt):
|
91 |
+
input = torch.cat([input[:, :3],
|
92 |
+
gt[0:1, 3:18].repeat(input.shape[0], 1),
|
93 |
+
input[:, 3:6],
|
94 |
+
gt[0:1, 21:27].repeat(input.shape[0], 1),
|
95 |
+
input[:, 6:9],
|
96 |
+
gt[0:1, 30:36].repeat(input.shape[0], 1),
|
97 |
+
input[:, 9:12],
|
98 |
+
gt[0:1, 39:45].repeat(input.shape[0], 1),
|
99 |
+
input[:, 12:]]
|
100 |
+
, dim=1)
|
101 |
+
return input
|
102 |
+
|
103 |
+
|
104 |
+
def poses2poses(input, gt):
|
105 |
+
input = torch.cat([input[:, :3],
|
106 |
+
gt[0:1, 3:18].repeat(input.shape[0], 1),
|
107 |
+
input[:, 18:21],
|
108 |
+
gt[0:1, 21:27].repeat(input.shape[0], 1),
|
109 |
+
input[:, 27:30],
|
110 |
+
gt[0:1, 30:36].repeat(input.shape[0], 1),
|
111 |
+
input[:, 36:39],
|
112 |
+
gt[0:1, 39:45].repeat(input.shape[0], 1),
|
113 |
+
input[:, 45:]]
|
114 |
+
, dim=1)
|
115 |
+
return input
|
116 |
+
|
117 |
+
def poses2pred(input, stand=False):
|
118 |
+
if stand:
|
119 |
+
lp = lower_pose_stand.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device)
|
120 |
+
# lp = torch.zeros_like(lower_pose).unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device)
|
121 |
+
else:
|
122 |
+
lp = lower_pose.unsqueeze(dim=0).repeat(input.shape[0], 1).to(input.device)
|
123 |
+
input = torch.cat([input[:, :3],
|
124 |
+
lp[:, :15],
|
125 |
+
input[:, 18:21],
|
126 |
+
lp[:, 15:21],
|
127 |
+
input[:, 27:30],
|
128 |
+
lp[:, 21:27],
|
129 |
+
input[:, 36:39],
|
130 |
+
lp[:, 27:],
|
131 |
+
input[:, 45:]]
|
132 |
+
, dim=1)
|
133 |
+
return input
|
134 |
+
|
135 |
+
|
136 |
+
rearrange = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]\
|
137 |
+
# ,22, 23, 24, 25, 40, 26, 41,
|
138 |
+
# 27, 42, 28, 43, 29, 44, 30, 45, 31, 46, 32, 47, 33, 48, 34, 49, 35, 50, 36, 51, 37, 52, 38, 53, 39, 54, 55,
|
139 |
+
# 57, 56, 59, 58, 60, 63, 61, 64, 62, 65, 66, 71, 67, 72, 68, 73, 69, 74, 70, 75]
|
140 |
+
|
141 |
+
symmetry = [0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1]#, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
142 |
+
# 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
143 |
+
# 1, 1, 1, 1, 1, 1]
|
data_utils/mesh_dataset.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
|
5 |
+
sys.path.append(os.getcwd())
|
6 |
+
|
7 |
+
import json
|
8 |
+
from glob import glob
|
9 |
+
from data_utils.utils import *
|
10 |
+
import torch.utils.data as data
|
11 |
+
from data_utils.consts import speaker_id
|
12 |
+
from data_utils.lower_body import count_part
|
13 |
+
import random
|
14 |
+
from data_utils.rotation_conversion import axis_angle_to_matrix, matrix_to_rotation_6d
|
15 |
+
|
16 |
+
with open('data_utils/hand_component.json') as file_obj:
|
17 |
+
comp = json.load(file_obj)
|
18 |
+
left_hand_c = np.asarray(comp['left'])
|
19 |
+
right_hand_c = np.asarray(comp['right'])
|
20 |
+
|
21 |
+
|
22 |
+
def to3d(data):
|
23 |
+
left_hand_pose = np.einsum('bi,ij->bj', data[:, 75:87], left_hand_c[:12, :])
|
24 |
+
right_hand_pose = np.einsum('bi,ij->bj', data[:, 87:99], right_hand_c[:12, :])
|
25 |
+
data = np.concatenate((data[:, :75], left_hand_pose, right_hand_pose), axis=-1)
|
26 |
+
return data
|
27 |
+
|
28 |
+
|
29 |
+
class SmplxDataset():
|
30 |
+
'''
|
31 |
+
creat a dataset for every segment and concat.
|
32 |
+
'''
|
33 |
+
|
34 |
+
def __init__(self,
|
35 |
+
data_root,
|
36 |
+
speaker,
|
37 |
+
motion_fn,
|
38 |
+
audio_fn,
|
39 |
+
audio_sr,
|
40 |
+
fps,
|
41 |
+
feat_method='mel_spec',
|
42 |
+
audio_feat_dim=64,
|
43 |
+
audio_feat_win_size=None,
|
44 |
+
|
45 |
+
train=True,
|
46 |
+
load_all=False,
|
47 |
+
split_trans_zero=False,
|
48 |
+
limbscaling=False,
|
49 |
+
num_frames=25,
|
50 |
+
num_pre_frames=25,
|
51 |
+
num_generate_length=25,
|
52 |
+
context_info=False,
|
53 |
+
convert_to_6d=False,
|
54 |
+
expression=False,
|
55 |
+
config=None,
|
56 |
+
am=None,
|
57 |
+
am_sr=None,
|
58 |
+
whole_video=False
|
59 |
+
):
|
60 |
+
|
61 |
+
self.data_root = data_root
|
62 |
+
self.speaker = speaker
|
63 |
+
|
64 |
+
self.feat_method = feat_method
|
65 |
+
self.audio_fn = audio_fn
|
66 |
+
self.audio_sr = audio_sr
|
67 |
+
self.fps = fps
|
68 |
+
self.audio_feat_dim = audio_feat_dim
|
69 |
+
self.audio_feat_win_size = audio_feat_win_size
|
70 |
+
self.context_info = context_info # for aud feat
|
71 |
+
self.convert_to_6d = convert_to_6d
|
72 |
+
self.expression = expression
|
73 |
+
|
74 |
+
self.train = train
|
75 |
+
self.load_all = load_all
|
76 |
+
self.split_trans_zero = split_trans_zero
|
77 |
+
self.limbscaling = limbscaling
|
78 |
+
self.num_frames = num_frames
|
79 |
+
self.num_pre_frames = num_pre_frames
|
80 |
+
self.num_generate_length = num_generate_length
|
81 |
+
# print('num_generate_length ', self.num_generate_length)
|
82 |
+
|
83 |
+
self.config = config
|
84 |
+
self.am_sr = am_sr
|
85 |
+
self.whole_video = whole_video
|
86 |
+
load_mode = self.config.dataset_load_mode
|
87 |
+
|
88 |
+
if load_mode == 'pickle':
|
89 |
+
raise NotImplementedError
|
90 |
+
|
91 |
+
elif load_mode == 'csv':
|
92 |
+
import pickle
|
93 |
+
with open(data_root, 'rb') as f:
|
94 |
+
u = pickle._Unpickler(f)
|
95 |
+
data = u.load()
|
96 |
+
self.data = data[0]
|
97 |
+
if self.load_all:
|
98 |
+
self._load_npz_all()
|
99 |
+
|
100 |
+
elif load_mode == 'json':
|
101 |
+
self.annotations = glob(data_root + '/*pkl')
|
102 |
+
if len(self.annotations) == 0:
|
103 |
+
raise FileNotFoundError(data_root + ' are empty')
|
104 |
+
self.annotations = sorted(self.annotations)
|
105 |
+
self.img_name_list = self.annotations
|
106 |
+
|
107 |
+
if self.load_all:
|
108 |
+
self._load_them_all(am, am_sr, motion_fn)
|
109 |
+
|
110 |
+
def _load_npz_all(self):
|
111 |
+
self.loaded_data = {}
|
112 |
+
self.complete_data = []
|
113 |
+
data = self.data
|
114 |
+
shape = data['body_pose_axis'].shape[0]
|
115 |
+
self.betas = data['betas']
|
116 |
+
self.img_name_list = []
|
117 |
+
for index in range(shape):
|
118 |
+
img_name = f'{index:6d}'
|
119 |
+
self.img_name_list.append(img_name)
|
120 |
+
|
121 |
+
jaw_pose = data['jaw_pose'][index]
|
122 |
+
leye_pose = data['leye_pose'][index]
|
123 |
+
reye_pose = data['reye_pose'][index]
|
124 |
+
global_orient = data['global_orient'][index]
|
125 |
+
body_pose = data['body_pose_axis'][index]
|
126 |
+
left_hand_pose = data['left_hand_pose'][index]
|
127 |
+
right_hand_pose = data['right_hand_pose'][index]
|
128 |
+
|
129 |
+
full_body = np.concatenate(
|
130 |
+
(jaw_pose, leye_pose, reye_pose, global_orient, body_pose, left_hand_pose, right_hand_pose))
|
131 |
+
assert full_body.shape[0] == 99
|
132 |
+
if self.convert_to_6d:
|
133 |
+
full_body = to3d(full_body)
|
134 |
+
full_body = torch.from_numpy(full_body)
|
135 |
+
full_body = matrix_to_rotation_6d(axis_angle_to_matrix(full_body))
|
136 |
+
full_body = np.asarray(full_body)
|
137 |
+
if self.expression:
|
138 |
+
expression = data['expression'][index]
|
139 |
+
full_body = np.concatenate((full_body, expression))
|
140 |
+
# full_body = np.concatenate((full_body, non_zero))
|
141 |
+
else:
|
142 |
+
full_body = to3d(full_body)
|
143 |
+
if self.expression:
|
144 |
+
expression = data['expression'][index]
|
145 |
+
full_body = np.concatenate((full_body, expression))
|
146 |
+
|
147 |
+
self.loaded_data[img_name] = full_body.reshape(-1)
|
148 |
+
self.complete_data.append(full_body.reshape(-1))
|
149 |
+
|
150 |
+
self.complete_data = np.array(self.complete_data)
|
151 |
+
|
152 |
+
if self.audio_feat_win_size is not None:
|
153 |
+
self.audio_feat = get_mfcc_old(self.audio_fn).transpose(1, 0)
|
154 |
+
# print(self.audio_feat.shape)
|
155 |
+
else:
|
156 |
+
if self.feat_method == 'mel_spec':
|
157 |
+
self.audio_feat = get_melspec(self.audio_fn, fps=self.fps, sr=self.audio_sr, n_mels=self.audio_feat_dim)
|
158 |
+
elif self.feat_method == 'mfcc':
|
159 |
+
self.audio_feat = get_mfcc(self.audio_fn,
|
160 |
+
smlpx=True,
|
161 |
+
sr=self.audio_sr,
|
162 |
+
n_mfcc=self.audio_feat_dim,
|
163 |
+
win_size=self.audio_feat_win_size
|
164 |
+
)
|
165 |
+
|
166 |
+
def _load_them_all(self, am, am_sr, motion_fn):
|
167 |
+
self.loaded_data = {}
|
168 |
+
self.complete_data = []
|
169 |
+
f = open(motion_fn, 'rb+')
|
170 |
+
data = pickle.load(f)
|
171 |
+
|
172 |
+
self.betas = np.array(data['betas'])
|
173 |
+
|
174 |
+
jaw_pose = np.array(data['jaw_pose'])
|
175 |
+
leye_pose = np.array(data['leye_pose'])
|
176 |
+
reye_pose = np.array(data['reye_pose'])
|
177 |
+
global_orient = np.array(data['global_orient']).squeeze()
|
178 |
+
body_pose = np.array(data['body_pose_axis'])
|
179 |
+
left_hand_pose = np.array(data['left_hand_pose'])
|
180 |
+
right_hand_pose = np.array(data['right_hand_pose'])
|
181 |
+
|
182 |
+
full_body = np.concatenate(
|
183 |
+
(jaw_pose, leye_pose, reye_pose, global_orient, body_pose, left_hand_pose, right_hand_pose), axis=1)
|
184 |
+
assert full_body.shape[1] == 99
|
185 |
+
|
186 |
+
|
187 |
+
if self.convert_to_6d:
|
188 |
+
full_body = to3d(full_body)
|
189 |
+
full_body = torch.from_numpy(full_body)
|
190 |
+
full_body = matrix_to_rotation_6d(axis_angle_to_matrix(full_body.reshape(-1, 55, 3))).reshape(-1, 330)
|
191 |
+
full_body = np.asarray(full_body)
|
192 |
+
if self.expression:
|
193 |
+
expression = np.array(data['expression'])
|
194 |
+
full_body = np.concatenate((full_body, expression), axis=1)
|
195 |
+
|
196 |
+
else:
|
197 |
+
full_body = to3d(full_body)
|
198 |
+
expression = np.array(data['expression'])
|
199 |
+
full_body = np.concatenate((full_body, expression), axis=1)
|
200 |
+
|
201 |
+
self.complete_data = full_body
|
202 |
+
self.complete_data = np.array(self.complete_data)
|
203 |
+
|
204 |
+
if self.audio_feat_win_size is not None:
|
205 |
+
self.audio_feat = get_mfcc_old(self.audio_fn).transpose(1, 0)
|
206 |
+
else:
|
207 |
+
# if self.feat_method == 'mel_spec':
|
208 |
+
# self.audio_feat = get_melspec(self.audio_fn, fps=self.fps, sr=self.audio_sr, n_mels=self.audio_feat_dim)
|
209 |
+
# elif self.feat_method == 'mfcc':
|
210 |
+
self.audio_feat = get_mfcc_ta(self.audio_fn,
|
211 |
+
smlpx=True,
|
212 |
+
fps=30,
|
213 |
+
sr=self.audio_sr,
|
214 |
+
n_mfcc=self.audio_feat_dim,
|
215 |
+
win_size=self.audio_feat_win_size,
|
216 |
+
type=self.feat_method,
|
217 |
+
am=am,
|
218 |
+
am_sr=am_sr,
|
219 |
+
encoder_choice=self.config.Model.encoder_choice,
|
220 |
+
)
|
221 |
+
# with open(audio_file, 'w', encoding='utf-8') as file:
|
222 |
+
# file.write(json.dumps(self.audio_feat.__array__().tolist(), indent=0, ensure_ascii=False))
|
223 |
+
|
224 |
+
def get_dataset(self, normalization=False, normalize_stats=None, split='train'):
|
225 |
+
|
226 |
+
class __Worker__(data.Dataset):
|
227 |
+
def __init__(child, index_list, normalization, normalize_stats, split='train') -> None:
|
228 |
+
super().__init__()
|
229 |
+
child.index_list = index_list
|
230 |
+
child.normalization = normalization
|
231 |
+
child.normalize_stats = normalize_stats
|
232 |
+
child.split = split
|
233 |
+
|
234 |
+
def __getitem__(child, index):
|
235 |
+
num_generate_length = self.num_generate_length
|
236 |
+
num_pre_frames = self.num_pre_frames
|
237 |
+
seq_len = num_generate_length + num_pre_frames
|
238 |
+
# print(num_generate_length)
|
239 |
+
|
240 |
+
index = child.index_list[index]
|
241 |
+
index_new = index + random.randrange(0, 5, 3)
|
242 |
+
if index_new + seq_len > self.complete_data.shape[0]:
|
243 |
+
index_new = index
|
244 |
+
index = index_new
|
245 |
+
|
246 |
+
if child.split in ['val', 'pre', 'test'] or self.whole_video:
|
247 |
+
index = 0
|
248 |
+
seq_len = self.complete_data.shape[0]
|
249 |
+
seq_data = []
|
250 |
+
assert index + seq_len <= self.complete_data.shape[0]
|
251 |
+
# print(seq_len)
|
252 |
+
seq_data = self.complete_data[index:(index + seq_len), :]
|
253 |
+
seq_data = np.array(seq_data)
|
254 |
+
|
255 |
+
'''
|
256 |
+
audio feature,
|
257 |
+
'''
|
258 |
+
if not self.context_info:
|
259 |
+
if not self.whole_video:
|
260 |
+
audio_feat = self.audio_feat[index:index + seq_len, ...]
|
261 |
+
if audio_feat.shape[0] < seq_len:
|
262 |
+
audio_feat = np.pad(audio_feat, [[0, seq_len - audio_feat.shape[0]], [0, 0]],
|
263 |
+
mode='reflect')
|
264 |
+
|
265 |
+
assert audio_feat.shape[0] == seq_len and audio_feat.shape[1] == self.audio_feat_dim
|
266 |
+
else:
|
267 |
+
audio_feat = self.audio_feat
|
268 |
+
|
269 |
+
else: # including feature and history
|
270 |
+
if self.audio_feat_win_size is None:
|
271 |
+
audio_feat = self.audio_feat[index:index + seq_len + num_pre_frames, ...]
|
272 |
+
if audio_feat.shape[0] < seq_len + num_pre_frames:
|
273 |
+
audio_feat = np.pad(audio_feat,
|
274 |
+
[[0, seq_len + self.num_frames - audio_feat.shape[0]], [0, 0]],
|
275 |
+
mode='constant')
|
276 |
+
|
277 |
+
assert audio_feat.shape[0] == self.num_frames + seq_len and audio_feat.shape[
|
278 |
+
1] == self.audio_feat_dim
|
279 |
+
|
280 |
+
if child.normalization:
|
281 |
+
data_mean = child.normalize_stats['mean'].reshape(1, -1)
|
282 |
+
data_std = child.normalize_stats['std'].reshape(1, -1)
|
283 |
+
seq_data[:, :330] = (seq_data[:, :330] - data_mean) / data_std
|
284 |
+
if child.split in['train', 'test']:
|
285 |
+
if self.convert_to_6d:
|
286 |
+
if self.expression:
|
287 |
+
data_sample = {
|
288 |
+
'poses': seq_data[:, :330].astype(np.float).transpose(1, 0),
|
289 |
+
'expression': seq_data[:, 330:].astype(np.float).transpose(1, 0),
|
290 |
+
# 'nzero': seq_data[:, 375:].astype(np.float).transpose(1, 0),
|
291 |
+
'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
|
292 |
+
'speaker': speaker_id[self.speaker],
|
293 |
+
'betas': self.betas,
|
294 |
+
'aud_file': self.audio_fn,
|
295 |
+
}
|
296 |
+
else:
|
297 |
+
data_sample = {
|
298 |
+
'poses': seq_data[:, :330].astype(np.float).transpose(1, 0),
|
299 |
+
'nzero': seq_data[:, 330:].astype(np.float).transpose(1, 0),
|
300 |
+
'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
|
301 |
+
'speaker': speaker_id[self.speaker],
|
302 |
+
'betas': self.betas
|
303 |
+
}
|
304 |
+
else:
|
305 |
+
if self.expression:
|
306 |
+
data_sample = {
|
307 |
+
'poses': seq_data[:, :165].astype(np.float).transpose(1, 0),
|
308 |
+
'expression': seq_data[:, 165:].astype(np.float).transpose(1, 0),
|
309 |
+
'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
|
310 |
+
# 'wv2_feat': wv2_feat.astype(np.float).transpose(1, 0),
|
311 |
+
'speaker': speaker_id[self.speaker],
|
312 |
+
'aud_file': self.audio_fn,
|
313 |
+
'betas': self.betas
|
314 |
+
}
|
315 |
+
else:
|
316 |
+
data_sample = {
|
317 |
+
'poses': seq_data.astype(np.float).transpose(1, 0),
|
318 |
+
'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
|
319 |
+
'speaker': speaker_id[self.speaker],
|
320 |
+
'betas': self.betas
|
321 |
+
}
|
322 |
+
return data_sample
|
323 |
+
else:
|
324 |
+
data_sample = {
|
325 |
+
'poses': seq_data[:, :330].astype(np.float).transpose(1, 0),
|
326 |
+
'expression': seq_data[:, 330:].astype(np.float).transpose(1, 0),
|
327 |
+
# 'nzero': seq_data[:, 325:].astype(np.float).transpose(1, 0),
|
328 |
+
'aud_feat': audio_feat.astype(np.float).transpose(1, 0),
|
329 |
+
'aud_file': self.audio_fn,
|
330 |
+
'speaker': speaker_id[self.speaker],
|
331 |
+
'betas': self.betas
|
332 |
+
}
|
333 |
+
return data_sample
|
334 |
+
def __len__(child):
|
335 |
+
return len(child.index_list)
|
336 |
+
|
337 |
+
if split == 'train':
|
338 |
+
index_list = list(
|
339 |
+
range(0, min(self.complete_data.shape[0], self.audio_feat.shape[0]) - self.num_generate_length - self.num_pre_frames,
|
340 |
+
6))
|
341 |
+
elif split in ['val', 'test']:
|
342 |
+
index_list = list([0])
|
343 |
+
if self.whole_video:
|
344 |
+
index_list = list([0])
|
345 |
+
self.all_dataset = __Worker__(index_list, normalization, normalize_stats, split)
|
346 |
+
|
347 |
+
def __len__(self):
|
348 |
+
return len(self.img_name_list)
|
data_utils/rotation_conversion.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
2 |
+
# Check PYTORCH3D_LICENCE before use
|
3 |
+
|
4 |
+
import functools
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
"""
|
12 |
+
The transformation matrices returned from the functions in this file assume
|
13 |
+
the points on which the transformation will be applied are column vectors.
|
14 |
+
i.e. the R matrix is structured as
|
15 |
+
|
16 |
+
R = [
|
17 |
+
[Rxx, Rxy, Rxz],
|
18 |
+
[Ryx, Ryy, Ryz],
|
19 |
+
[Rzx, Rzy, Rzz],
|
20 |
+
] # (3, 3)
|
21 |
+
|
22 |
+
This matrix can be applied to column vectors by post multiplication
|
23 |
+
by the points e.g.
|
24 |
+
|
25 |
+
points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point
|
26 |
+
transformed_points = R * points
|
27 |
+
|
28 |
+
To apply the same matrix to points which are row vectors, the R matrix
|
29 |
+
can be transposed and pre multiplied by the points:
|
30 |
+
|
31 |
+
e.g.
|
32 |
+
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point
|
33 |
+
transformed_points = points * R.transpose(1, 0)
|
34 |
+
"""
|
35 |
+
|
36 |
+
|
37 |
+
def quaternion_to_matrix(quaternions):
|
38 |
+
"""
|
39 |
+
Convert rotations given as quaternions to rotation matrices.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
quaternions: quaternions with real part first,
|
43 |
+
as tensor of shape (..., 4).
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
47 |
+
"""
|
48 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
49 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
50 |
+
|
51 |
+
o = torch.stack(
|
52 |
+
(
|
53 |
+
1 - two_s * (j * j + k * k),
|
54 |
+
two_s * (i * j - k * r),
|
55 |
+
two_s * (i * k + j * r),
|
56 |
+
two_s * (i * j + k * r),
|
57 |
+
1 - two_s * (i * i + k * k),
|
58 |
+
two_s * (j * k - i * r),
|
59 |
+
two_s * (i * k - j * r),
|
60 |
+
two_s * (j * k + i * r),
|
61 |
+
1 - two_s * (i * i + j * j),
|
62 |
+
),
|
63 |
+
-1,
|
64 |
+
)
|
65 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
66 |
+
|
67 |
+
|
68 |
+
def _copysign(a, b):
|
69 |
+
"""
|
70 |
+
Return a tensor where each element has the absolute value taken from the,
|
71 |
+
corresponding element of a, with sign taken from the corresponding
|
72 |
+
element of b. This is like the standard copysign floating-point operation,
|
73 |
+
but is not careful about negative 0 and NaN.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
a: source tensor.
|
77 |
+
b: tensor whose signs will be used, of the same shape as a.
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
Tensor of the same shape as a with the signs of b.
|
81 |
+
"""
|
82 |
+
signs_differ = (a < 0) != (b < 0)
|
83 |
+
return torch.where(signs_differ, -a, a)
|
84 |
+
|
85 |
+
|
86 |
+
def _sqrt_positive_part(x):
|
87 |
+
"""
|
88 |
+
Returns torch.sqrt(torch.max(0, x))
|
89 |
+
but with a zero subgradient where x is 0.
|
90 |
+
"""
|
91 |
+
ret = torch.zeros_like(x)
|
92 |
+
positive_mask = x > 0
|
93 |
+
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
94 |
+
return ret
|
95 |
+
|
96 |
+
|
97 |
+
def matrix_to_quaternion(matrix):
|
98 |
+
"""
|
99 |
+
Convert rotations given as rotation matrices to quaternions.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
106 |
+
"""
|
107 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
108 |
+
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
109 |
+
m00 = matrix[..., 0, 0]
|
110 |
+
m11 = matrix[..., 1, 1]
|
111 |
+
m22 = matrix[..., 2, 2]
|
112 |
+
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22)
|
113 |
+
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22)
|
114 |
+
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22)
|
115 |
+
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22)
|
116 |
+
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2])
|
117 |
+
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0])
|
118 |
+
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1])
|
119 |
+
return torch.stack((o0, o1, o2, o3), -1)
|
120 |
+
|
121 |
+
|
122 |
+
def _axis_angle_rotation(axis: str, angle):
|
123 |
+
"""
|
124 |
+
Return the rotation matrices for one of the rotations about an axis
|
125 |
+
of which Euler angles describe, for each value of the angle given.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
axis: Axis label "X" or "Y or "Z".
|
129 |
+
angle: any shape tensor of Euler angles in radians
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
133 |
+
"""
|
134 |
+
|
135 |
+
cos = torch.cos(angle)
|
136 |
+
sin = torch.sin(angle)
|
137 |
+
one = torch.ones_like(angle)
|
138 |
+
zero = torch.zeros_like(angle)
|
139 |
+
|
140 |
+
if axis == "X":
|
141 |
+
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
142 |
+
if axis == "Y":
|
143 |
+
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
144 |
+
if axis == "Z":
|
145 |
+
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
146 |
+
|
147 |
+
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
|
148 |
+
|
149 |
+
|
150 |
+
def euler_angles_to_matrix(euler_angles, convention: str):
|
151 |
+
"""
|
152 |
+
Convert rotations given as Euler angles in radians to rotation matrices.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
euler_angles: Euler angles in radians as tensor of shape (..., 3).
|
156 |
+
convention: Convention string of three uppercase letters from
|
157 |
+
{"X", "Y", and "Z"}.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
161 |
+
"""
|
162 |
+
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
|
163 |
+
raise ValueError("Invalid input euler angles.")
|
164 |
+
if len(convention) != 3:
|
165 |
+
raise ValueError("Convention must have 3 letters.")
|
166 |
+
if convention[1] in (convention[0], convention[2]):
|
167 |
+
raise ValueError(f"Invalid convention {convention}.")
|
168 |
+
for letter in convention:
|
169 |
+
if letter not in ("X", "Y", "Z"):
|
170 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
171 |
+
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1))
|
172 |
+
return functools.reduce(torch.matmul, matrices)
|
173 |
+
|
174 |
+
|
175 |
+
def _angle_from_tan(
|
176 |
+
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
|
177 |
+
):
|
178 |
+
"""
|
179 |
+
Extract the first or third Euler angle from the two members of
|
180 |
+
the matrix which are positive constant times its sine and cosine.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
axis: Axis label "X" or "Y or "Z" for the angle we are finding.
|
184 |
+
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the
|
185 |
+
convention.
|
186 |
+
data: Rotation matrices as tensor of shape (..., 3, 3).
|
187 |
+
horizontal: Whether we are looking for the angle for the third axis,
|
188 |
+
which means the relevant entries are in the same row of the
|
189 |
+
rotation matrix. If not, they are in the same column.
|
190 |
+
tait_bryan: Whether the first and third axes in the convention differ.
|
191 |
+
|
192 |
+
Returns:
|
193 |
+
Euler Angles in radians for each matrix in data as a tensor
|
194 |
+
of shape (...).
|
195 |
+
"""
|
196 |
+
|
197 |
+
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
|
198 |
+
if horizontal:
|
199 |
+
i2, i1 = i1, i2
|
200 |
+
even = (axis + other_axis) in ["XY", "YZ", "ZX"]
|
201 |
+
if horizontal == even:
|
202 |
+
return torch.atan2(data[..., i1], data[..., i2])
|
203 |
+
if tait_bryan:
|
204 |
+
return torch.atan2(-data[..., i2], data[..., i1])
|
205 |
+
return torch.atan2(data[..., i2], -data[..., i1])
|
206 |
+
|
207 |
+
|
208 |
+
def _index_from_letter(letter: str):
|
209 |
+
if letter == "X":
|
210 |
+
return 0
|
211 |
+
if letter == "Y":
|
212 |
+
return 1
|
213 |
+
if letter == "Z":
|
214 |
+
return 2
|
215 |
+
|
216 |
+
|
217 |
+
def matrix_to_euler_angles(matrix, convention: str):
|
218 |
+
"""
|
219 |
+
Convert rotations given as rotation matrices to Euler angles in radians.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
223 |
+
convention: Convention string of three uppercase letters.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
Euler angles in radians as tensor of shape (..., 3).
|
227 |
+
"""
|
228 |
+
if len(convention) != 3:
|
229 |
+
raise ValueError("Convention must have 3 letters.")
|
230 |
+
if convention[1] in (convention[0], convention[2]):
|
231 |
+
raise ValueError(f"Invalid convention {convention}.")
|
232 |
+
for letter in convention:
|
233 |
+
if letter not in ("X", "Y", "Z"):
|
234 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
235 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
236 |
+
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
237 |
+
i0 = _index_from_letter(convention[0])
|
238 |
+
i2 = _index_from_letter(convention[2])
|
239 |
+
tait_bryan = i0 != i2
|
240 |
+
if tait_bryan:
|
241 |
+
central_angle = torch.asin(
|
242 |
+
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
central_angle = torch.acos(matrix[..., i0, i0])
|
246 |
+
|
247 |
+
o = (
|
248 |
+
_angle_from_tan(
|
249 |
+
convention[0], convention[1], matrix[..., i2], False, tait_bryan
|
250 |
+
),
|
251 |
+
central_angle,
|
252 |
+
_angle_from_tan(
|
253 |
+
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
|
254 |
+
),
|
255 |
+
)
|
256 |
+
return torch.stack(o, -1)
|
257 |
+
|
258 |
+
|
259 |
+
def random_quaternions(
|
260 |
+
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
261 |
+
):
|
262 |
+
"""
|
263 |
+
Generate random quaternions representing rotations,
|
264 |
+
i.e. versors with nonnegative real part.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
n: Number of quaternions in a batch to return.
|
268 |
+
dtype: Type to return.
|
269 |
+
device: Desired device of returned tensor. Default:
|
270 |
+
uses the current device for the default tensor type.
|
271 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
272 |
+
flag set.
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
Quaternions as tensor of shape (N, 4).
|
276 |
+
"""
|
277 |
+
o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad)
|
278 |
+
s = (o * o).sum(1)
|
279 |
+
o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None]
|
280 |
+
return o
|
281 |
+
|
282 |
+
|
283 |
+
def random_rotations(
|
284 |
+
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
285 |
+
):
|
286 |
+
"""
|
287 |
+
Generate random rotations as 3x3 rotation matrices.
|
288 |
+
|
289 |
+
Args:
|
290 |
+
n: Number of rotation matrices in a batch to return.
|
291 |
+
dtype: Type to return.
|
292 |
+
device: Device of returned tensor. Default: if None,
|
293 |
+
uses the current device for the default tensor type.
|
294 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
295 |
+
flag set.
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
Rotation matrices as tensor of shape (n, 3, 3).
|
299 |
+
"""
|
300 |
+
quaternions = random_quaternions(
|
301 |
+
n, dtype=dtype, device=device, requires_grad=requires_grad
|
302 |
+
)
|
303 |
+
return quaternion_to_matrix(quaternions)
|
304 |
+
|
305 |
+
|
306 |
+
def random_rotation(
|
307 |
+
dtype: Optional[torch.dtype] = None, device=None, requires_grad=False
|
308 |
+
):
|
309 |
+
"""
|
310 |
+
Generate a single random 3x3 rotation matrix.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
dtype: Type to return
|
314 |
+
device: Device of returned tensor. Default: if None,
|
315 |
+
uses the current device for the default tensor type
|
316 |
+
requires_grad: Whether the resulting tensor should have the gradient
|
317 |
+
flag set
|
318 |
+
|
319 |
+
Returns:
|
320 |
+
Rotation matrix as tensor of shape (3, 3).
|
321 |
+
"""
|
322 |
+
return random_rotations(1, dtype, device, requires_grad)[0]
|
323 |
+
|
324 |
+
|
325 |
+
def standardize_quaternion(quaternions):
|
326 |
+
"""
|
327 |
+
Convert a unit quaternion to a standard form: one in which the real
|
328 |
+
part is non negative.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
quaternions: Quaternions with real part first,
|
332 |
+
as tensor of shape (..., 4).
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
Standardized quaternions as tensor of shape (..., 4).
|
336 |
+
"""
|
337 |
+
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
|
338 |
+
|
339 |
+
|
340 |
+
def quaternion_raw_multiply(a, b):
|
341 |
+
"""
|
342 |
+
Multiply two quaternions.
|
343 |
+
Usual torch rules for broadcasting apply.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
a: Quaternions as tensor of shape (..., 4), real part first.
|
347 |
+
b: Quaternions as tensor of shape (..., 4), real part first.
|
348 |
+
|
349 |
+
Returns:
|
350 |
+
The product of a and b, a tensor of quaternions shape (..., 4).
|
351 |
+
"""
|
352 |
+
aw, ax, ay, az = torch.unbind(a, -1)
|
353 |
+
bw, bx, by, bz = torch.unbind(b, -1)
|
354 |
+
ow = aw * bw - ax * bx - ay * by - az * bz
|
355 |
+
ox = aw * bx + ax * bw + ay * bz - az * by
|
356 |
+
oy = aw * by - ax * bz + ay * bw + az * bx
|
357 |
+
oz = aw * bz + ax * by - ay * bx + az * bw
|
358 |
+
return torch.stack((ow, ox, oy, oz), -1)
|
359 |
+
|
360 |
+
|
361 |
+
def quaternion_multiply(a, b):
|
362 |
+
"""
|
363 |
+
Multiply two quaternions representing rotations, returning the quaternion
|
364 |
+
representing their composition, i.e. the versor with nonnegative real part.
|
365 |
+
Usual torch rules for broadcasting apply.
|
366 |
+
|
367 |
+
Args:
|
368 |
+
a: Quaternions as tensor of shape (..., 4), real part first.
|
369 |
+
b: Quaternions as tensor of shape (..., 4), real part first.
|
370 |
+
|
371 |
+
Returns:
|
372 |
+
The product of a and b, a tensor of quaternions of shape (..., 4).
|
373 |
+
"""
|
374 |
+
ab = quaternion_raw_multiply(a, b)
|
375 |
+
return standardize_quaternion(ab)
|
376 |
+
|
377 |
+
|
378 |
+
def quaternion_invert(quaternion):
|
379 |
+
"""
|
380 |
+
Given a quaternion representing rotation, get the quaternion representing
|
381 |
+
its inverse.
|
382 |
+
|
383 |
+
Args:
|
384 |
+
quaternion: Quaternions as tensor of shape (..., 4), with real part
|
385 |
+
first, which must be versors (unit quaternions).
|
386 |
+
|
387 |
+
Returns:
|
388 |
+
The inverse, a tensor of quaternions of shape (..., 4).
|
389 |
+
"""
|
390 |
+
|
391 |
+
return quaternion * quaternion.new_tensor([1, -1, -1, -1])
|
392 |
+
|
393 |
+
|
394 |
+
def quaternion_apply(quaternion, point):
|
395 |
+
"""
|
396 |
+
Apply the rotation given by a quaternion to a 3D point.
|
397 |
+
Usual torch rules for broadcasting apply.
|
398 |
+
|
399 |
+
Args:
|
400 |
+
quaternion: Tensor of quaternions, real part first, of shape (..., 4).
|
401 |
+
point: Tensor of 3D points of shape (..., 3).
|
402 |
+
|
403 |
+
Returns:
|
404 |
+
Tensor of rotated points of shape (..., 3).
|
405 |
+
"""
|
406 |
+
if point.size(-1) != 3:
|
407 |
+
raise ValueError(f"Points are not in 3D, f{point.shape}.")
|
408 |
+
real_parts = point.new_zeros(point.shape[:-1] + (1,))
|
409 |
+
point_as_quaternion = torch.cat((real_parts, point), -1)
|
410 |
+
out = quaternion_raw_multiply(
|
411 |
+
quaternion_raw_multiply(quaternion, point_as_quaternion),
|
412 |
+
quaternion_invert(quaternion),
|
413 |
+
)
|
414 |
+
return out[..., 1:]
|
415 |
+
|
416 |
+
|
417 |
+
def axis_angle_to_matrix(axis_angle):
|
418 |
+
"""
|
419 |
+
Convert rotations given as axis/angle to rotation matrices.
|
420 |
+
|
421 |
+
Args:
|
422 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
423 |
+
as a tensor of shape (..., 3), where the magnitude is
|
424 |
+
the angle turned anticlockwise in radians around the
|
425 |
+
vector's direction.
|
426 |
+
|
427 |
+
Returns:
|
428 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
429 |
+
"""
|
430 |
+
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
|
431 |
+
|
432 |
+
|
433 |
+
def matrix_to_axis_angle(matrix):
|
434 |
+
"""
|
435 |
+
Convert rotations given as rotation matrices to axis/angle.
|
436 |
+
|
437 |
+
Args:
|
438 |
+
matrix: Rotation matrices as tensor of shape (..., 3, 3).
|
439 |
+
|
440 |
+
Returns:
|
441 |
+
Rotations given as a vector in axis angle form, as a tensor
|
442 |
+
of shape (..., 3), where the magnitude is the angle
|
443 |
+
turned anticlockwise in radians around the vector's
|
444 |
+
direction.
|
445 |
+
"""
|
446 |
+
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
|
447 |
+
|
448 |
+
|
449 |
+
def axis_angle_to_quaternion(axis_angle):
|
450 |
+
"""
|
451 |
+
Convert rotations given as axis/angle to quaternions.
|
452 |
+
|
453 |
+
Args:
|
454 |
+
axis_angle: Rotations given as a vector in axis angle form,
|
455 |
+
as a tensor of shape (..., 3), where the magnitude is
|
456 |
+
the angle turned anticlockwise in radians around the
|
457 |
+
vector's direction.
|
458 |
+
|
459 |
+
Returns:
|
460 |
+
quaternions with real part first, as tensor of shape (..., 4).
|
461 |
+
"""
|
462 |
+
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
|
463 |
+
half_angles = 0.5 * angles
|
464 |
+
eps = 1e-6
|
465 |
+
small_angles = angles.abs() < eps
|
466 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
467 |
+
sin_half_angles_over_angles[~small_angles] = (
|
468 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
469 |
+
)
|
470 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
471 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
472 |
+
sin_half_angles_over_angles[small_angles] = (
|
473 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
474 |
+
)
|
475 |
+
quaternions = torch.cat(
|
476 |
+
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
|
477 |
+
)
|
478 |
+
return quaternions
|
479 |
+
|
480 |
+
|
481 |
+
def quaternion_to_axis_angle(quaternions):
|
482 |
+
"""
|
483 |
+
Convert rotations given as quaternions to axis/angle.
|
484 |
+
|
485 |
+
Args:
|
486 |
+
quaternions: quaternions with real part first,
|
487 |
+
as tensor of shape (..., 4).
|
488 |
+
|
489 |
+
Returns:
|
490 |
+
Rotations given as a vector in axis angle form, as a tensor
|
491 |
+
of shape (..., 3), where the magnitude is the angle
|
492 |
+
turned anticlockwise in radians around the vector's
|
493 |
+
direction.
|
494 |
+
"""
|
495 |
+
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
|
496 |
+
half_angles = torch.atan2(norms, quaternions[..., :1])
|
497 |
+
angles = 2 * half_angles
|
498 |
+
eps = 1e-6
|
499 |
+
small_angles = angles.abs() < eps
|
500 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
501 |
+
sin_half_angles_over_angles[~small_angles] = (
|
502 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
503 |
+
)
|
504 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
505 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
506 |
+
sin_half_angles_over_angles[small_angles] = (
|
507 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
508 |
+
)
|
509 |
+
return quaternions[..., 1:] / sin_half_angles_over_angles
|
510 |
+
|
511 |
+
|
512 |
+
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
513 |
+
"""
|
514 |
+
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
|
515 |
+
using Gram--Schmidt orthogonalisation per Section B of [1].
|
516 |
+
Args:
|
517 |
+
d6: 6D rotation representation, of size (*, 6)
|
518 |
+
|
519 |
+
Returns:
|
520 |
+
batch of rotation matrices of size (*, 3, 3)
|
521 |
+
|
522 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
523 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
524 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
525 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
526 |
+
"""
|
527 |
+
|
528 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
529 |
+
b1 = F.normalize(a1, dim=-1)
|
530 |
+
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
531 |
+
b2 = F.normalize(b2, dim=-1)
|
532 |
+
b3 = torch.cross(b1, b2, dim=-1)
|
533 |
+
return torch.stack((b1, b2, b3), dim=-2)
|
534 |
+
|
535 |
+
|
536 |
+
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
|
537 |
+
"""
|
538 |
+
Converts rotation matrices to 6D rotation representation by Zhou et al. [1]
|
539 |
+
by dropping the last row. Note that 6D representation is not unique.
|
540 |
+
Args:
|
541 |
+
matrix: batch of rotation matrices of size (*, 3, 3)
|
542 |
+
|
543 |
+
Returns:
|
544 |
+
6D rotation representation, of size (*, 6)
|
545 |
+
|
546 |
+
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
|
547 |
+
On the Continuity of Rotation Representations in Neural Networks.
|
548 |
+
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
|
549 |
+
Retrieved from http://arxiv.org/abs/1812.07035
|
550 |
+
"""
|
551 |
+
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
|
data_utils/utils.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
# import librosa #has to do this cause librosa is not supported on my server
|
3 |
+
import python_speech_features
|
4 |
+
from scipy.io import wavfile
|
5 |
+
from scipy import signal
|
6 |
+
import librosa
|
7 |
+
import torch
|
8 |
+
import torchaudio as ta
|
9 |
+
import torchaudio.functional as ta_F
|
10 |
+
import torchaudio.transforms as ta_T
|
11 |
+
# import pyloudnorm as pyln
|
12 |
+
|
13 |
+
|
14 |
+
def load_wav_old(audio_fn, sr = 16000):
|
15 |
+
sample_rate, sig = wavfile.read(audio_fn)
|
16 |
+
if sample_rate != sr:
|
17 |
+
result = int((sig.shape[0]) / sample_rate * sr)
|
18 |
+
x_resampled = signal.resample(sig, result)
|
19 |
+
x_resampled = x_resampled.astype(np.float64)
|
20 |
+
return x_resampled, sr
|
21 |
+
|
22 |
+
sig = sig / (2**15)
|
23 |
+
return sig, sample_rate
|
24 |
+
|
25 |
+
|
26 |
+
def get_mfcc(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
|
27 |
+
|
28 |
+
y, sr = librosa.load(audio_fn, sr=sr, mono=True)
|
29 |
+
|
30 |
+
if win_size is None:
|
31 |
+
hop_len=int(sr / fps)
|
32 |
+
else:
|
33 |
+
hop_len=int(sr / win_size)
|
34 |
+
|
35 |
+
n_fft=2048
|
36 |
+
|
37 |
+
C = librosa.feature.mfcc(
|
38 |
+
y = y,
|
39 |
+
sr = sr,
|
40 |
+
n_mfcc = n_mfcc,
|
41 |
+
hop_length = hop_len,
|
42 |
+
n_fft = n_fft
|
43 |
+
)
|
44 |
+
|
45 |
+
if C.shape[0] == n_mfcc:
|
46 |
+
C = C.transpose(1, 0)
|
47 |
+
|
48 |
+
return C
|
49 |
+
|
50 |
+
|
51 |
+
def get_melspec(audio_fn, eps=1e-6, fps = 25, sr=16000, n_mels=64):
|
52 |
+
raise NotImplementedError
|
53 |
+
'''
|
54 |
+
# y, sr = load_wav(audio_fn=audio_fn, sr=sr)
|
55 |
+
|
56 |
+
# hop_len = int(sr / fps)
|
57 |
+
# n_fft = 2048
|
58 |
+
|
59 |
+
# C = librosa.feature.melspectrogram(
|
60 |
+
# y = y,
|
61 |
+
# sr = sr,
|
62 |
+
# n_fft=n_fft,
|
63 |
+
# hop_length=hop_len,
|
64 |
+
# n_mels = n_mels,
|
65 |
+
# fmin=0,
|
66 |
+
# fmax=8000)
|
67 |
+
|
68 |
+
|
69 |
+
# mask = (C == 0).astype(np.float)
|
70 |
+
# C = mask * eps + (1-mask) * C
|
71 |
+
|
72 |
+
# C = np.log(C)
|
73 |
+
# #wierd error may occur here
|
74 |
+
# assert not (np.isnan(C).any()), audio_fn
|
75 |
+
# if C.shape[0] == n_mels:
|
76 |
+
# C = C.transpose(1, 0)
|
77 |
+
|
78 |
+
# return C
|
79 |
+
'''
|
80 |
+
|
81 |
+
def extract_mfcc(audio,sample_rate=16000):
|
82 |
+
mfcc = zip(*python_speech_features.mfcc(audio,sample_rate, numcep=64, nfilt=64, nfft=2048, winstep=0.04))
|
83 |
+
mfcc = np.stack([np.array(i) for i in mfcc])
|
84 |
+
return mfcc
|
85 |
+
|
86 |
+
def get_mfcc_psf(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
|
87 |
+
y, sr = load_wav_old(audio_fn, sr=sr)
|
88 |
+
|
89 |
+
if y.shape.__len__() > 1:
|
90 |
+
y = (y[:,0]+y[:,1])/2
|
91 |
+
|
92 |
+
if win_size is None:
|
93 |
+
hop_len=int(sr / fps)
|
94 |
+
else:
|
95 |
+
hop_len=int(sr/ win_size)
|
96 |
+
|
97 |
+
n_fft=2048
|
98 |
+
|
99 |
+
#hard coded for 25 fps
|
100 |
+
if not smlpx:
|
101 |
+
C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=0.04)
|
102 |
+
else:
|
103 |
+
C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01/15)
|
104 |
+
# if C.shape[0] == n_mfcc:
|
105 |
+
# C = C.transpose(1, 0)
|
106 |
+
|
107 |
+
return C
|
108 |
+
|
109 |
+
|
110 |
+
def get_mfcc_psf_min(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
|
111 |
+
y, sr = load_wav_old(audio_fn, sr=sr)
|
112 |
+
|
113 |
+
if y.shape.__len__() > 1:
|
114 |
+
y = (y[:, 0] + y[:, 1]) / 2
|
115 |
+
n_fft = 2048
|
116 |
+
|
117 |
+
slice_len = 22000 * 5
|
118 |
+
slice = y.size // slice_len
|
119 |
+
|
120 |
+
C = []
|
121 |
+
|
122 |
+
for i in range(slice):
|
123 |
+
if i != (slice - 1):
|
124 |
+
feat = python_speech_features.mfcc(y[i*slice_len:(i+1)*slice_len], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15)
|
125 |
+
else:
|
126 |
+
feat = python_speech_features.mfcc(y[i * slice_len:], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15)
|
127 |
+
|
128 |
+
C.append(feat)
|
129 |
+
|
130 |
+
return C
|
131 |
+
|
132 |
+
|
133 |
+
def audio_chunking(audio: torch.Tensor, frame_rate: int = 30, chunk_size: int = 16000):
|
134 |
+
"""
|
135 |
+
:param audio: 1 x T tensor containing a 16kHz audio signal
|
136 |
+
:param frame_rate: frame rate for video (we need one audio chunk per video frame)
|
137 |
+
:param chunk_size: number of audio samples per chunk
|
138 |
+
:return: num_chunks x chunk_size tensor containing sliced audio
|
139 |
+
"""
|
140 |
+
samples_per_frame = chunk_size // frame_rate
|
141 |
+
padding = (chunk_size - samples_per_frame) // 2
|
142 |
+
audio = torch.nn.functional.pad(audio.unsqueeze(0), pad=[padding, padding]).squeeze(0)
|
143 |
+
anchor_points = list(range(chunk_size//2, audio.shape[-1]-chunk_size//2, samples_per_frame))
|
144 |
+
audio = torch.cat([audio[:, i-chunk_size//2:i+chunk_size//2] for i in anchor_points], dim=0)
|
145 |
+
return audio
|
146 |
+
|
147 |
+
|
148 |
+
def get_mfcc_ta(audio_fn, eps=1e-6, fps=15, smlpx=False, sr=16000, n_mfcc=64, win_size=None, type='mfcc', am=None, am_sr=None, encoder_choice='mfcc'):
|
149 |
+
if am is None:
|
150 |
+
sr_0, audio = audio_fn
|
151 |
+
audio = torch.tensor(audio)/32767
|
152 |
+
if len(audio.shape) == 1:
|
153 |
+
audio.unsqueeze_(dim=0)
|
154 |
+
elif audio.shape[1] == 1 or audio.shape[1] == 2:
|
155 |
+
audio.transpose_(0, 1)
|
156 |
+
|
157 |
+
if sr != sr_0:
|
158 |
+
audio = ta.transforms.Resample(sr_0, sr)(audio)
|
159 |
+
if audio.shape[0] > 1:
|
160 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
161 |
+
|
162 |
+
n_fft = 2048
|
163 |
+
if fps == 15:
|
164 |
+
hop_length = 1467
|
165 |
+
elif fps == 30:
|
166 |
+
hop_length = 734
|
167 |
+
win_length = hop_length * 2
|
168 |
+
n_mels = 256
|
169 |
+
n_mfcc = 64
|
170 |
+
|
171 |
+
if type == 'mfcc':
|
172 |
+
mfcc_transform = ta_T.MFCC(
|
173 |
+
sample_rate=sr,
|
174 |
+
n_mfcc=n_mfcc,
|
175 |
+
melkwargs={
|
176 |
+
"n_fft": n_fft,
|
177 |
+
"n_mels": n_mels,
|
178 |
+
# "win_length": win_length,
|
179 |
+
"hop_length": hop_length,
|
180 |
+
"mel_scale": "htk",
|
181 |
+
},
|
182 |
+
)
|
183 |
+
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0,1).numpy()
|
184 |
+
elif type == 'mel':
|
185 |
+
# audio = 0.01 * audio / torch.mean(torch.abs(audio))
|
186 |
+
mel_transform = ta_T.MelSpectrogram(
|
187 |
+
sample_rate=sr, n_fft=n_fft, win_length=None, hop_length=hop_length, n_mels=n_mels
|
188 |
+
)
|
189 |
+
audio_ft = mel_transform(audio).squeeze(0).transpose(0,1).numpy()
|
190 |
+
# audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).transpose(0,1).numpy()
|
191 |
+
elif type == 'mel_mul':
|
192 |
+
audio = 0.01 * audio / torch.mean(torch.abs(audio))
|
193 |
+
audio = audio_chunking(audio, frame_rate=fps, chunk_size=sr)
|
194 |
+
mel_transform = ta_T.MelSpectrogram(
|
195 |
+
sample_rate=sr, n_fft=n_fft, win_length=int(sr/20), hop_length=int(sr/100), n_mels=n_mels
|
196 |
+
)
|
197 |
+
audio_ft = mel_transform(audio).squeeze(1)
|
198 |
+
audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).numpy()
|
199 |
+
else:
|
200 |
+
sampling_rate, speech_array = audio_fn
|
201 |
+
speech_array = torch.tensor(speech_array) / 32767
|
202 |
+
if len(speech_array.shape) == 1:
|
203 |
+
speech_array.unsqueeze_(0)
|
204 |
+
elif speech_array.shape[1] == 1 or speech_array.shape[1] == 2:
|
205 |
+
speech_array.transpose_(0, 1)
|
206 |
+
if sr != sampling_rate:
|
207 |
+
speech_array = ta.transforms.Resample(sampling_rate, sr)(speech_array)
|
208 |
+
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
|
209 |
+
speech_array = speech_array.numpy()
|
210 |
+
|
211 |
+
if encoder_choice == 'faceformer':
|
212 |
+
# audio_ft = np.squeeze(am(speech_array, sampling_rate=16000).input_values).reshape(-1, 1)
|
213 |
+
audio_ft = speech_array.reshape(-1, 1)
|
214 |
+
elif encoder_choice == 'meshtalk':
|
215 |
+
audio_ft = 0.01 * speech_array / np.mean(np.abs(speech_array))
|
216 |
+
elif encoder_choice == 'onset':
|
217 |
+
audio_ft = librosa.onset.onset_detect(y=speech_array, sr=16000, units='time').reshape(-1, 1)
|
218 |
+
else:
|
219 |
+
audio, sr_0 = ta.load(audio_fn)
|
220 |
+
if sr != sr_0:
|
221 |
+
audio = ta.transforms.Resample(sr_0, sr)(audio)
|
222 |
+
if audio.shape[0] > 1:
|
223 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
224 |
+
|
225 |
+
n_fft = 2048
|
226 |
+
if fps == 15:
|
227 |
+
hop_length = 1467
|
228 |
+
elif fps == 30:
|
229 |
+
hop_length = 734
|
230 |
+
win_length = hop_length * 2
|
231 |
+
n_mels = 256
|
232 |
+
n_mfcc = 64
|
233 |
+
|
234 |
+
mfcc_transform = ta_T.MFCC(
|
235 |
+
sample_rate=sr,
|
236 |
+
n_mfcc=n_mfcc,
|
237 |
+
melkwargs={
|
238 |
+
"n_fft": n_fft,
|
239 |
+
"n_mels": n_mels,
|
240 |
+
# "win_length": win_length,
|
241 |
+
"hop_length": hop_length,
|
242 |
+
"mel_scale": "htk",
|
243 |
+
},
|
244 |
+
)
|
245 |
+
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0, 1).numpy()
|
246 |
+
return audio_ft
|
247 |
+
|
248 |
+
|
249 |
+
def get_mfcc_sepa(audio_fn, fps=15, sr=16000):
|
250 |
+
audio, sr_0 = ta.load(audio_fn)
|
251 |
+
if sr != sr_0:
|
252 |
+
audio = ta.transforms.Resample(sr_0, sr)(audio)
|
253 |
+
if audio.shape[0] > 1:
|
254 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
255 |
+
|
256 |
+
n_fft = 2048
|
257 |
+
if fps == 15:
|
258 |
+
hop_length = 1467
|
259 |
+
elif fps == 30:
|
260 |
+
hop_length = 734
|
261 |
+
n_mels = 256
|
262 |
+
n_mfcc = 64
|
263 |
+
|
264 |
+
mfcc_transform = ta_T.MFCC(
|
265 |
+
sample_rate=sr,
|
266 |
+
n_mfcc=n_mfcc,
|
267 |
+
melkwargs={
|
268 |
+
"n_fft": n_fft,
|
269 |
+
"n_mels": n_mels,
|
270 |
+
# "win_length": win_length,
|
271 |
+
"hop_length": hop_length,
|
272 |
+
"mel_scale": "htk",
|
273 |
+
},
|
274 |
+
)
|
275 |
+
audio_ft_0 = mfcc_transform(audio[0, :sr*2]).squeeze(dim=0).transpose(0,1).numpy()
|
276 |
+
audio_ft_1 = mfcc_transform(audio[0, sr*2:]).squeeze(dim=0).transpose(0,1).numpy()
|
277 |
+
audio_ft = np.concatenate((audio_ft_0, audio_ft_1), axis=0)
|
278 |
+
return audio_ft, audio_ft_0.shape[0]
|
279 |
+
|
280 |
+
|
281 |
+
def get_mfcc_old(wav_file):
|
282 |
+
sig, sample_rate = load_wav_old(wav_file)
|
283 |
+
mfcc = extract_mfcc(sig)
|
284 |
+
return mfcc
|
285 |
+
|
286 |
+
|
287 |
+
def smooth_geom(geom, mask: torch.Tensor = None, filter_size: int = 9, sigma: float = 2.0):
|
288 |
+
"""
|
289 |
+
:param geom: T x V x 3 tensor containing a temporal sequence of length T with V vertices in each frame
|
290 |
+
:param mask: V-dimensional Tensor containing a mask with vertices to be smoothed
|
291 |
+
:param filter_size: size of the Gaussian filter
|
292 |
+
:param sigma: standard deviation of the Gaussian filter
|
293 |
+
:return: T x V x 3 tensor containing smoothed geometry (i.e., smoothed in the area indicated by the mask)
|
294 |
+
"""
|
295 |
+
assert filter_size % 2 == 1, f"filter size must be odd but is {filter_size}"
|
296 |
+
# Gaussian smoothing (low-pass filtering)
|
297 |
+
fltr = np.arange(-(filter_size // 2), filter_size // 2 + 1)
|
298 |
+
fltr = np.exp(-0.5 * fltr ** 2 / sigma ** 2)
|
299 |
+
fltr = torch.Tensor(fltr) / np.sum(fltr)
|
300 |
+
# apply fltr
|
301 |
+
fltr = fltr.view(1, 1, -1).to(device=geom.device)
|
302 |
+
T, V = geom.shape[1], geom.shape[2]
|
303 |
+
g = torch.nn.functional.pad(
|
304 |
+
geom.permute(2, 0, 1).view(V, 1, T),
|
305 |
+
pad=[filter_size // 2, filter_size // 2], mode='replicate'
|
306 |
+
)
|
307 |
+
g = torch.nn.functional.conv1d(g, fltr).view(V, 1, T)
|
308 |
+
smoothed = g.permute(1, 2, 0).contiguous()
|
309 |
+
# blend smoothed signal with original signal
|
310 |
+
if mask is None:
|
311 |
+
return smoothed
|
312 |
+
else:
|
313 |
+
return smoothed * mask[None, :, None] + geom * (-mask[None, :, None] + 1)
|
314 |
+
|
315 |
+
if __name__ == '__main__':
|
316 |
+
audio_fn = '../sample_audio/clip000028_tCAkv4ggPgI.wav'
|
317 |
+
|
318 |
+
C = get_mfcc_psf(audio_fn)
|
319 |
+
print(C.shape)
|
320 |
+
|
321 |
+
C_2 = get_mfcc_librosa(audio_fn)
|
322 |
+
print(C.shape)
|
323 |
+
|
324 |
+
print(C)
|
325 |
+
print(C_2)
|
326 |
+
print((C == C_2).all())
|
327 |
+
# print(y.shape, sr)
|
328 |
+
# mel_spec = get_melspec(audio_fn)
|
329 |
+
# print(mel_spec.shape)
|
330 |
+
# mfcc = get_mfcc(audio_fn, sr = 16000)
|
331 |
+
# print(mfcc.shape)
|
332 |
+
# print(mel_spec.max(), mel_spec.min())
|
333 |
+
# print(mfcc.max(), mfcc.min())
|
demo/1st-page/1st-page-upper.mp4
ADDED
Binary file (837 kB). View file
|
|
demo/1st-page/1st-page-upper.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:159eefc300544ea95d919b49707afa466e6246135da9a986b4abbc55bbc54850
|
3 |
+
size 407168
|
demo/french/french.mp4
ADDED
Binary file (592 kB). View file
|
|
demo/french/french.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:289d7a2abb18efa495587a4c4b094a109bdb7d3efd779800f028708bde4d1477
|
3 |
+
size 305408
|
demo/rich/rich.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc50b66c7df10233191921a6a3f19c2895249997206f30e5e099cc10b90903a
|
3 |
+
size 3608757
|
demo/rich/rich.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d03c956ed3992980fe37581019ec12350531489b12b46a55cfc4c562f7bd8ddb
|
3 |
+
size 1908128
|
demo/song/cut.mp4
ADDED
Binary file (655 kB). View file
|
|
demo/song/song.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8827d6daaec213bee7bd32af68a0cf8ea83d154f32d006bd7f38120e2c282045
|
3 |
+
size 3178290
|
demo/song/song.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:157bfbde5a1b15ac812e52d8b08997be1a41fae93b3a7fe613b897d1ff5d8996
|
3 |
+
size 1707788
|
demo/style/chemistry.mp4
ADDED
Binary file (670 kB). View file
|
|
demo/style/chemistry.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a8dc42938343bc10b149a6a74d43d5a4cef010c6f2a0c58bffee7f48b2a1e81
|
3 |
+
size 318128
|
demo/style/conan.mp4
ADDED
Binary file (610 kB). View file
|
|
demo/style/conan.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:350ca76806d86ff7b36fbfeaec219d7c0cf515c3c23dfe6791143b82e7ec3327
|
3 |
+
size 318128
|
demo/style/diversity.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09fd9e6330ced1ecbf10a6e7e0a4f6ebad098eb44115a2ee35a070d02e522ec8
|
3 |
+
size 5882474
|
demo/style/diversity.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e4c37f510943dad934da97a8eade5ddce25165df20419e74606fb0160b4ce07
|
3 |
+
size 3816128
|
demo/style/face.mp4
ADDED
Binary file (687 kB). View file
|
|
demo/style/face.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b51d0d309e92449323ab481a3cc16c88d2b04f6f487eb366720a9ad7f8754f03
|
3 |
+
size 318128
|
demo/style/oliver.mp4
ADDED
Binary file (589 kB). View file
|
|
demo/style/oliver.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:149258f227975e1f07b449f0ab5e4c3e3e1458f97fa646360eac3f1428c52f5a
|
3 |
+
size 318128
|
demo/style/seth.mp4
ADDED
Binary file (558 kB). View file
|
|
demo/style/seth.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6132a40d60ee8cf954d74293ea46e75cd4b4d2001ca96fc4713abe06a34b5a3c
|
3 |
+
size 318128
|
demo_audio/1st-page.wav
ADDED
Binary file (410 kB). View file
|
|
demo_audio/french.wav
ADDED
Binary file (461 kB). View file
|
|
demo_audio/rich.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db9c793b66a64ffb11f0f673e70f9e0188bfa1ce95a391cb9af7d9c7ccf92597
|
3 |
+
size 10584078
|