File size: 5,276 Bytes
865fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import pickle
from tqdm import tqdm
import shutil
import torch
import numpy as np
import librosa
import random

speakers = ['seth', 'conan', 'oliver', 'chemistry']
data_root = "../ExpressiveWholeBodyDatasetv1.0/"
split = 'train'



def split_list(full_list,shuffle=False,ratio=0.2):
    n_total = len(full_list)
    offset_0 = int(n_total * ratio)
    offset_1 = int(n_total * ratio * 2)
    if n_total==0 or offset_1<1:
        return [],full_list
    if shuffle:
        random.shuffle(full_list)
    sublist_0 = full_list[:offset_0]
    sublist_1 = full_list[offset_0:offset_1]
    sublist_2 = full_list[offset_1:]
    return sublist_0, sublist_1, sublist_2


def moveto(list, file):
    for f in list:
        before, after = '/'.join(f.split('/')[:-1]), f.split('/')[-1]
        new_path = os.path.join(before, file)
        new_path = os.path.join(new_path, after)
        # os.makedirs(new_path)
        # os.path.isdir(new_path)
        # shutil.move(f, new_path)

        #转移到新目录
        shutil.copytree(f, new_path)
        #删除原train里的文件
        shutil.rmtree(f)
    return None


def read_pkl(data):
    betas = np.array(data['betas'])

    jaw_pose = np.array(data['jaw_pose'])
    leye_pose = np.array(data['leye_pose'])
    reye_pose = np.array(data['reye_pose'])
    global_orient = np.array(data['global_orient']).squeeze()
    body_pose = np.array(data['body_pose_axis'])
    left_hand_pose = np.array(data['left_hand_pose'])
    right_hand_pose = np.array(data['right_hand_pose'])

    full_body = np.concatenate(
        (jaw_pose, leye_pose, reye_pose, global_orient, body_pose, left_hand_pose, right_hand_pose), axis=1)

    expression = np.array(data['expression'])
    full_body = np.concatenate((full_body, expression), axis=1)

    if (full_body.shape[0] < 90) or (torch.isnan(torch.from_numpy(full_body)).sum() > 0):
        return 1
    else:
        return 0


for speaker_name in speakers:
    speaker_root = os.path.join(data_root, speaker_name)

    videos = [v for v in os.listdir(speaker_root)]
    print(videos)

    haode = huaide = 0
    total_seqs = []

    for vid in tqdm(videos, desc="Processing training data of {}......".format(speaker_name)):
    # for vid in videos:
        source_vid = vid
        vid_pth = os.path.join(speaker_root, source_vid)
        # vid_pth = os.path.join(speaker_root, source_vid, 'images/half', split)
        t = os.path.join(speaker_root, source_vid, 'test')
        v = os.path.join(speaker_root, source_vid, 'val')

        # if os.path.exists(t):
        #     shutil.rmtree(t)
        # if os.path.exists(v):
        #     shutil.rmtree(v)
        try:
            seqs = [s for s in os.listdir(vid_pth)]
        except:
            continue
        # if len(seqs) == 0:
        #     shutil.rmtree(os.path.join(speaker_root, source_vid))
            # None
        for s in seqs:
            quality = 0
            total_seqs.append(os.path.join(vid_pth,s))
            seq_root = os.path.join(vid_pth, s)
            key = seq_root  # correspond to clip******
            audio_fname = os.path.join(speaker_root, source_vid, s, '%s.wav' % (s))

            # delete the data without audio or the audio file could not be read
            if os.path.isfile(audio_fname):
                try:
                    audio = librosa.load(audio_fname)
                except:
                    # print(key)
                    shutil.rmtree(key)
                    huaide = huaide + 1
                    continue
            else:
                huaide = huaide + 1
                # print(key)
                shutil.rmtree(key)
                continue

            # check motion file
            motion_fname = os.path.join(speaker_root, source_vid, s, '%s.pkl' % (s))
            try:
                f = open(motion_fname, 'rb+')
            except:
                shutil.rmtree(key)
                huaide = huaide + 1
                continue

            data = pickle.load(f)
            w = read_pkl(data)
            f.close()
            quality = quality + w

            if w == 1:
                shutil.rmtree(key)
                # print(key)
                huaide = huaide + 1
                continue

            haode = haode + 1

    print("huaide:{}, haode:{}, total_seqs:{}".format(huaide, haode, total_seqs.__len__()))

for speaker_name in speakers:
    speaker_root = os.path.join(data_root, speaker_name)

    videos = [v for v in os.listdir(speaker_root)]
    print(videos)

    haode = huaide = 0
    total_seqs = []

    for vid in tqdm(videos, desc="Processing training data of {}......".format(speaker_name)):
        # for vid in videos:
        source_vid = vid
        vid_pth = os.path.join(speaker_root, source_vid)
        try:
            seqs = [s for s in os.listdir(vid_pth)]
        except:
            continue
        for s in seqs:
            quality = 0
            total_seqs.append(os.path.join(vid_pth, s))
    print("total_seqs:{}".format(total_seqs.__len__()))
    # split the dataset
    test_list, val_list, train_list = split_list(total_seqs, True, 0.1)
    print(len(test_list), len(val_list), len(train_list))
    moveto(train_list, 'train')
    moveto(test_list, 'test')
    moveto(val_list, 'val')