Spaces:
Runtime error
Runtime error
multiple updates
#5
by
cececerece
- opened
- app.py +63 -267
- requirements.txt +123 -8
- utils/__init__.py +3 -0
- utils/bot.py +203 -0
- utils/functions.py +72 -0
app.py
CHANGED
@@ -1,287 +1,83 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
import time
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
from langchain.text_splitter import CharacterTextSplitter
|
7 |
-
from langchain.llms import OpenAI
|
8 |
-
from langchain.embeddings import OpenAIEmbeddings
|
9 |
-
from langchain.vectorstores import Chroma
|
10 |
-
from langchain.chains import ConversationalRetrievalChain
|
11 |
-
from langchain import PromptTemplate
|
12 |
-
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
13 |
-
import requests
|
14 |
-
from PIL import Image
|
15 |
-
import torch
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
|
20 |
-
# Chat History:
|
21 |
-
# {chat_history}
|
22 |
-
# Follow Up Input: {question}
|
23 |
-
# Standalone question:"""
|
24 |
-
|
25 |
-
# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
26 |
-
|
27 |
-
# template = """
|
28 |
-
# You are given the following extracted parts of a long document and a question. Provide a short structured answer.
|
29 |
-
# If you don't know the answer, look on the web. Don't try to make up an answer.
|
30 |
-
# Question: {question}
|
31 |
-
# =========
|
32 |
-
# {context}
|
33 |
-
# =========
|
34 |
-
# Answer in Markdown:"""
|
35 |
-
|
36 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png', 'chart_example.png')
|
37 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1081.png', 'chart_example_2.png')
|
38 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/18143564004789.png', 'chart_example_3.png')
|
39 |
-
torch.hub.download_url_to_file('https://sharkcoder.com/files/article/matplotlib-bar-plot.png', 'chart_example_4.png')
|
40 |
-
|
41 |
-
|
42 |
-
model_name = "google/matcha-chartqa"
|
43 |
-
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
|
44 |
-
processor = Pix2StructProcessor.from_pretrained(model_name)
|
45 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
46 |
-
model.to(device)
|
47 |
-
|
48 |
-
def filter_output(output):
|
49 |
-
return output.replace("<0x0A>", "")
|
50 |
-
|
51 |
-
def chart_qa(image, question):
|
52 |
-
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
|
53 |
-
predictions = model.generate(**inputs, max_new_tokens=512)
|
54 |
-
return filter_output(processor.decode(predictions[0], skip_special_tokens=True))
|
55 |
-
|
56 |
-
def loading_pdf():
|
57 |
-
return "Loading..."
|
58 |
-
|
59 |
-
|
60 |
-
def pdf_changes(pdf_doc, open_ai_key):
|
61 |
-
if open_ai_key is not None:
|
62 |
-
os.environ['OPENAI_API_KEY'] = open_ai_key
|
63 |
-
loader = OnlinePDFLoader(pdf_doc.name)
|
64 |
-
documents = loader.load()
|
65 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
66 |
-
texts = text_splitter.split_documents(documents)
|
67 |
-
embeddings = OpenAIEmbeddings()
|
68 |
-
db = Chroma.from_documents(texts, embeddings)
|
69 |
-
retriever = db.as_retriever()
|
70 |
-
global qa
|
71 |
-
qa = ConversationalRetrievalChain.from_llm(
|
72 |
-
llm=OpenAI(temperature=0.5),
|
73 |
-
retriever=retriever,
|
74 |
-
return_source_documents=True)
|
75 |
-
return "Ready"
|
76 |
-
else:
|
77 |
-
return "You forgot OpenAI API key"
|
78 |
-
|
79 |
-
def add_text(history, text):
|
80 |
-
history = history + [(text, None)]
|
81 |
-
return history, ""
|
82 |
-
|
83 |
-
def bot(history):
|
84 |
-
response = infer(history[-1][0], history)
|
85 |
-
history[-1][1] = ""
|
86 |
-
|
87 |
-
for character in response:
|
88 |
-
history[-1][1] += character
|
89 |
-
time.sleep(0.05)
|
90 |
-
yield history
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
res = []
|
95 |
-
for human, ai in history[:-1]:
|
96 |
-
pair = (human, ai)
|
97 |
-
res.append(pair)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
query = question
|
102 |
-
result = qa({"question": query, "chat_history": chat_history})
|
103 |
-
#print(result)
|
104 |
-
return result["answer"]
|
105 |
-
|
106 |
-
css="""
|
107 |
-
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
108 |
-
"""
|
109 |
-
|
110 |
-
title = """
|
111 |
-
<div style="text-align: center;">
|
112 |
-
<h1>YnP LangChain Test </h1>
|
113 |
-
<p style="text-align: center;">Please specify OpenAI Key before use</p>
|
114 |
-
</div>
|
115 |
-
"""
|
116 |
-
|
117 |
-
|
118 |
-
# with gr.Blocks(css=css) as demo:
|
119 |
-
# with gr.Column(elem_id="col-container"):
|
120 |
-
# gr.HTML(title)
|
121 |
-
|
122 |
-
# with gr.Column():
|
123 |
-
# openai_key = gr.Textbox(label="You OpenAI API key", type="password")
|
124 |
-
# pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
125 |
-
# with gr.Row():
|
126 |
-
# langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
127 |
-
# load_pdf = gr.Button("Load pdf to langchain")
|
128 |
-
|
129 |
-
# chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
130 |
-
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
131 |
-
# submit_btn = gr.Button("Send Message")
|
132 |
-
|
133 |
-
# load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
134 |
-
# load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
|
135 |
-
# question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
136 |
-
# bot, chatbot, chatbot
|
137 |
-
# )
|
138 |
-
# submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
139 |
-
# bot, chatbot, chatbot)
|
140 |
-
|
141 |
-
# demo.launch()
|
142 |
-
|
143 |
-
|
144 |
-
"""functions"""
|
145 |
-
|
146 |
-
def load_file():
|
147 |
-
return "Loading..."
|
148 |
-
|
149 |
-
def load_xlsx(name):
|
150 |
-
import pandas as pd
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
return data
|
155 |
-
|
156 |
-
def table_loader(table_file, open_ai_key):
|
157 |
-
import os
|
158 |
-
from langchain.llms import OpenAI
|
159 |
-
from langchain.agents import create_pandas_dataframe_agent
|
160 |
-
from pandas import read_csv
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
os.environ['OPENAI_API_KEY'] = open_ai_key
|
165 |
-
else:
|
166 |
-
return "Enter API"
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
|
175 |
-
return "Ready!"
|
176 |
-
else:
|
177 |
-
return "Wrong file format! Upload excel file or csv!"
|
178 |
|
179 |
-
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
187 |
|
188 |
-
|
189 |
-
|
|
|
|
|
190 |
|
191 |
-
bot_message =
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
195 |
|
|
|
|
|
196 |
|
197 |
with gr.Blocks() as demo:
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
show_label=False,
|
202 |
-
placeholder="Your OpenAI key",
|
203 |
-
type = 'password',
|
204 |
-
).style(container=False)
|
205 |
-
|
206 |
-
# PDF processing tab
|
207 |
-
with gr.Tab("PDFs"):
|
208 |
-
|
209 |
-
with gr.Row():
|
210 |
-
|
211 |
-
with gr.Column(scale=0.5):
|
212 |
-
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
213 |
-
load_pdf = gr.Button("Load pdf to langchain")
|
214 |
-
|
215 |
-
with gr.Column(scale=0.5):
|
216 |
-
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
|
217 |
-
|
218 |
-
|
219 |
-
with gr.Row():
|
220 |
-
|
221 |
-
with gr.Column(scale=1):
|
222 |
-
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
223 |
-
|
224 |
-
with gr.Row():
|
225 |
-
|
226 |
-
with gr.Column(scale=0.85):
|
227 |
-
question = gr.Textbox(
|
228 |
-
show_label=False,
|
229 |
-
placeholder="Enter text and press enter, or upload an image",
|
230 |
-
).style(container=False)
|
231 |
-
|
232 |
-
with gr.Column(scale=0.15, min_width=0):
|
233 |
-
clr_btn = gr.Button("Clear!")
|
234 |
-
|
235 |
-
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
236 |
-
load_pdf.click(pdf_changes, inputs=[pdf_doc, key], outputs=[langchain_status], queue=True)
|
237 |
-
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
238 |
-
bot, chatbot, chatbot
|
239 |
-
)
|
240 |
-
|
241 |
-
# XLSX and CSV processing tab
|
242 |
-
with gr.Tab("Spreadsheets"):
|
243 |
-
with gr.Row():
|
244 |
-
|
245 |
-
with gr.Column(scale=0.5):
|
246 |
-
status_sh = gr.Textbox(label="Status", placeholder="", interactive=False)
|
247 |
-
load_table = gr.Button("Load csv|xlsx to langchain")
|
248 |
-
|
249 |
-
with gr.Column(scale=0.5):
|
250 |
-
raw_table = gr.File(label="Load a table file (xls or csv)", file_types=['.csv, xlsx, xls'], type="file")
|
251 |
-
|
252 |
-
|
253 |
-
with gr.Row():
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
).style(container=False)
|
266 |
-
|
267 |
-
with gr.Column(scale=0.15, min_width=0):
|
268 |
-
clr_btn = gr.Button("Clear!")
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
-
with gr.Tab("Charts"):
|
278 |
-
image = gr.Image(type="pil", label="Chart")
|
279 |
-
question = gr.Textbox(label="Question")
|
280 |
-
load_chart = gr.Button("Load chart and question!")
|
281 |
-
answer = gr.Textbox(label="Model Output")
|
282 |
-
|
283 |
-
load_chart.click(chart_qa, [image, question], answer)
|
284 |
|
285 |
-
|
286 |
-
demo.queue(concurrency_count=3)
|
287 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import time
|
3 |
+
from utils import Bot
|
4 |
+
from utils.functions import make_documents, make_descriptions
|
5 |
|
6 |
+
def init_bot(file=None,title=None,pdf=None,key=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
if key is None:
|
9 |
+
return 'You must submit OpenAI key'
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
if pdf is None:
|
12 |
+
return 'You must submit pdf file'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
if file is None:
|
15 |
+
return 'You must submit media file'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
if title is None:
|
18 |
+
return 'You must submit the description of the media'
|
|
|
|
|
|
|
19 |
|
20 |
+
file = file.name
|
21 |
+
print(file)
|
22 |
+
pdf = pdf.name
|
23 |
+
file_description = make_descriptions(file, title)
|
24 |
+
# print(file_description)
|
25 |
+
documents = make_documents(pdf)
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# print(documents[0])
|
28 |
+
global bot
|
29 |
|
30 |
+
bot = Bot(
|
31 |
+
openai_api_key=key,
|
32 |
+
file_descriptions=file_description,
|
33 |
+
text_documents=documents,
|
34 |
+
verbose=False
|
35 |
+
)
|
36 |
|
37 |
+
return 'Chat bot successfully initialized'
|
38 |
+
|
39 |
+
def msg_bot(history):
|
40 |
+
message = history[-1][0]
|
41 |
|
42 |
+
bot_message = bot(message)['output']
|
43 |
+
history[-1][1] = ""
|
44 |
+
for character in bot_message:
|
45 |
+
history[-1][1] += character
|
46 |
+
time.sleep(0.05)
|
47 |
+
yield history
|
48 |
|
49 |
+
def user(user_message, history):
|
50 |
+
return "", history + [[user_message, None]]
|
51 |
|
52 |
with gr.Blocks() as demo:
|
53 |
+
|
54 |
+
key = gr.Textbox(label='OpenAI key')
|
55 |
+
with gr.Tab("Chat bot initialization"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
with gr.Row(variant='panel'):
|
58 |
+
with gr.Column():
|
59 |
+
with gr.Row():
|
60 |
+
title = gr.Textbox(label='File short description')
|
61 |
+
with gr.Row():
|
62 |
+
file = gr.File(label='CSV or image', file_types=['.csv', 'image'])
|
63 |
+
|
64 |
+
pdf = gr.File(label='pdf')
|
65 |
|
66 |
+
with gr.Row(variant='panel'):
|
67 |
+
init_button = gr.Button('submit')
|
68 |
+
init_output = gr.Textbox(label="Initialization status")
|
69 |
+
init_button.click(fn=init_bot,inputs=[file,title,pdf,key],outputs=init_output,api_name='init')
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
chatbot = gr.Chatbot()
|
72 |
+
msg = gr.Textbox(label='Ask the bot')
|
73 |
+
clear = gr.Button('Clear')
|
74 |
+
msg.submit(user,[msg,chatbot],[msg,chatbot],queue=False).then(
|
75 |
+
msg_bot, chatbot, chatbot
|
76 |
+
)
|
77 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
78 |
+
|
79 |
+
demo.queue()
|
80 |
+
demo.launch()
|
81 |
+
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,8 +1,123 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.1.0
|
2 |
+
aiohttp==3.8.4
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==5.0.0
|
5 |
+
anyio==3.6.2
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==23.1.0
|
8 |
+
backoff==2.2.1
|
9 |
+
certifi==2023.5.7
|
10 |
+
charset-normalizer==3.1.0
|
11 |
+
chromadb==0.3.22
|
12 |
+
click==8.1.3
|
13 |
+
clickhouse-connect==0.5.24
|
14 |
+
cmake==3.26.3
|
15 |
+
contourpy==1.0.7
|
16 |
+
cycler==0.11.0
|
17 |
+
dataclasses-json==0.5.7
|
18 |
+
duckdb==0.7.1
|
19 |
+
fastapi==0.95.1
|
20 |
+
ffmpy==0.3.0
|
21 |
+
filelock==3.12.0
|
22 |
+
fonttools==4.39.4
|
23 |
+
frozenlist==1.3.3
|
24 |
+
fsspec==2023.5.0
|
25 |
+
gradio==3.29.0
|
26 |
+
gradio_client==0.2.2
|
27 |
+
greenlet==2.0.2
|
28 |
+
h11==0.14.0
|
29 |
+
hnswlib==0.7.0
|
30 |
+
httpcore==0.17.0
|
31 |
+
httptools==0.5.0
|
32 |
+
httpx==0.24.0
|
33 |
+
huggingface-hub==0.14.1
|
34 |
+
idna==3.4
|
35 |
+
importlib-resources==5.12.0
|
36 |
+
Jinja2==3.1.2
|
37 |
+
joblib==1.2.0
|
38 |
+
jsonschema==4.17.3
|
39 |
+
kiwisolver==1.4.4
|
40 |
+
langchain==0.0.164
|
41 |
+
linkify-it-py==2.0.2
|
42 |
+
lit==16.0.3
|
43 |
+
lz4==4.3.2
|
44 |
+
markdown-it-py==2.2.0
|
45 |
+
MarkupSafe==2.1.2
|
46 |
+
marshmallow==3.19.0
|
47 |
+
marshmallow-enum==1.5.1
|
48 |
+
matplotlib==3.7.1
|
49 |
+
mdit-py-plugins==0.3.3
|
50 |
+
mdurl==0.1.2
|
51 |
+
monotonic==1.6
|
52 |
+
mpmath==1.3.0
|
53 |
+
multidict==6.0.4
|
54 |
+
mypy-extensions==1.0.0
|
55 |
+
networkx==3.1
|
56 |
+
nltk==3.8.1
|
57 |
+
numexpr==2.8.4
|
58 |
+
numpy==1.24.3
|
59 |
+
nvidia-cublas-cu11==11.10.3.66
|
60 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
61 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
62 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
63 |
+
nvidia-cudnn-cu11==8.5.0.96
|
64 |
+
nvidia-cufft-cu11==10.9.0.58
|
65 |
+
nvidia-curand-cu11==10.2.10.91
|
66 |
+
nvidia-cusolver-cu11==11.4.0.1
|
67 |
+
nvidia-cusparse-cu11==11.7.4.91
|
68 |
+
nvidia-nccl-cu11==2.14.3
|
69 |
+
nvidia-nvtx-cu11==11.7.91
|
70 |
+
openai==0.27.6
|
71 |
+
openapi-schema-pydantic==1.2.4
|
72 |
+
orjson==3.8.12
|
73 |
+
packaging==23.1
|
74 |
+
pandas==2.0.1
|
75 |
+
Pillow==9.5.0
|
76 |
+
pkgutil_resolve_name==1.3.10
|
77 |
+
posthog==3.0.1
|
78 |
+
pydantic==1.10.7
|
79 |
+
pydub==0.25.1
|
80 |
+
Pygments==2.15.1
|
81 |
+
pyparsing==3.0.9
|
82 |
+
pypdf==3.8.1
|
83 |
+
pyrsistent==0.19.3
|
84 |
+
python-dateutil==2.8.2
|
85 |
+
python-dotenv==1.0.0
|
86 |
+
python-multipart==0.0.6
|
87 |
+
pytz==2023.3
|
88 |
+
PyYAML==6.0
|
89 |
+
regex==2023.5.5
|
90 |
+
requests==2.30.0
|
91 |
+
scikit-learn==1.2.2
|
92 |
+
scipy==1.10.1
|
93 |
+
semantic-version==2.10.0
|
94 |
+
sentence-transformers==2.2.2
|
95 |
+
sentencepiece==0.1.99
|
96 |
+
six==1.16.0
|
97 |
+
sniffio==1.3.0
|
98 |
+
SQLAlchemy==2.0.12
|
99 |
+
starlette==0.26.1
|
100 |
+
sympy==1.12
|
101 |
+
tabulate==0.9.0
|
102 |
+
tenacity==8.2.2
|
103 |
+
threadpoolctl==3.1.0
|
104 |
+
tiktoken==0.4.0
|
105 |
+
tokenizers==0.13.3
|
106 |
+
toolz==0.12.0
|
107 |
+
torch==2.0.1
|
108 |
+
torchvision==0.15.2
|
109 |
+
tqdm==4.65.0
|
110 |
+
transformers==4.29.0
|
111 |
+
triton==2.0.0
|
112 |
+
typing-inspect==0.8.0
|
113 |
+
typing_extensions==4.5.0
|
114 |
+
tzdata==2023.3
|
115 |
+
uc-micro-py==1.0.2
|
116 |
+
urllib3==2.0.2
|
117 |
+
uvicorn==0.22.0
|
118 |
+
uvloop==0.17.0
|
119 |
+
watchfiles==0.19.0
|
120 |
+
websockets==11.0.3
|
121 |
+
yarl==1.9.2
|
122 |
+
zipp==3.15.0
|
123 |
+
zstandard==0.21.0
|
utils/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .bot import Bot
|
2 |
+
from .functions import make_documents, make_descriptions
|
3 |
+
|
utils/bot.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import langchain
|
2 |
+
from langchain.agents import create_csv_agent
|
3 |
+
from langchain.schema import HumanMessage
|
4 |
+
from langchain.chat_models import ChatOpenAI
|
5 |
+
from langchain.embeddings import OpenAIEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from typing import List, Dict
|
8 |
+
from langchain.agents import AgentType
|
9 |
+
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
10 |
+
from utils.functions import Matcha_model
|
11 |
+
from PIL import Image
|
12 |
+
from pathlib import Path
|
13 |
+
from langchain.tools import StructuredTool
|
14 |
+
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
15 |
+
|
16 |
+
class Bot:
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
openai_api_key: str,
|
21 |
+
file_descriptions: List[Dict[str, any]],
|
22 |
+
text_documents: List[langchain.schema.Document],
|
23 |
+
verbose: bool = False
|
24 |
+
):
|
25 |
+
self.verbose = verbose
|
26 |
+
self.file_descriptions = file_descriptions
|
27 |
+
|
28 |
+
self.llm = ChatOpenAI(
|
29 |
+
openai_api_key=openai_api_key,
|
30 |
+
temperature=0,
|
31 |
+
model_name="gpt-3.5-turbo"
|
32 |
+
)
|
33 |
+
embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
34 |
+
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
35 |
+
vector_store = Chroma.from_documents(text_documents, embedding_function)
|
36 |
+
self.text_retriever = langchain.chains.RetrievalQAWithSourcesChain.from_chain_type(
|
37 |
+
llm=self.llm,
|
38 |
+
chain_type='stuff',
|
39 |
+
retriever=vector_store.as_retriever()
|
40 |
+
)
|
41 |
+
self.text_search_tool = langchain.agents.Tool(
|
42 |
+
func=self._text_search,
|
43 |
+
description="Use this tool when searching for text information",
|
44 |
+
name="search text information"
|
45 |
+
)
|
46 |
+
|
47 |
+
self.chart_model = Matcha_model()
|
48 |
+
|
49 |
+
def __call__(
|
50 |
+
self,
|
51 |
+
question: str
|
52 |
+
):
|
53 |
+
self.tools = []
|
54 |
+
self.tools.append(self.text_search_tool)
|
55 |
+
file = self._define_appropriate_file(question)
|
56 |
+
if file != "None of the files":
|
57 |
+
number = int(file[file.find('№')+1:])
|
58 |
+
file_description = [x for x in self.file_descriptions if x['number'] == number][0]
|
59 |
+
file_path = file_description['path']
|
60 |
+
|
61 |
+
if Path(file).suffix == '.csv':
|
62 |
+
self.csv_agent = create_csv_agent(
|
63 |
+
llm=self.llm,
|
64 |
+
path=file_path,
|
65 |
+
verbose=self.verbose
|
66 |
+
)
|
67 |
+
|
68 |
+
self._init_tabular_search_tool(file_description)
|
69 |
+
self.tools.append(self.tabular_search_tool)
|
70 |
+
|
71 |
+
else:
|
72 |
+
self._init_chart_search_tool(file_description)
|
73 |
+
self.tools.append(self.chart_search_tool)
|
74 |
+
|
75 |
+
self._init_chatbot()
|
76 |
+
# print(file)
|
77 |
+
response = self.agent(question)
|
78 |
+
return response
|
79 |
+
|
80 |
+
def _init_chatbot(self):
|
81 |
+
|
82 |
+
conversational_memory = ConversationBufferWindowMemory(
|
83 |
+
memory_key='chat_history',
|
84 |
+
k=5,
|
85 |
+
return_messages=True
|
86 |
+
)
|
87 |
+
|
88 |
+
self.agent = langchain.agents.initialize_agent(
|
89 |
+
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
|
90 |
+
tools=self.tools,
|
91 |
+
llm=self.llm,
|
92 |
+
verbose=self.verbose,
|
93 |
+
max_iterations=5,
|
94 |
+
early_stopping_method='generate',
|
95 |
+
memory=conversational_memory
|
96 |
+
)
|
97 |
+
sys_msg = (
|
98 |
+
"You are an expert summarizer and deliverer of information. "
|
99 |
+
"Yet, the reason you are so intelligent is that you make complex "
|
100 |
+
"information incredibly simple to understand. It's actually rather incredible."
|
101 |
+
"When users ask information you refer to the relevant tools."
|
102 |
+
"if one of the tools helped you with only a part of the necessary information, you must "
|
103 |
+
"try to find the missing information using another tool"
|
104 |
+
"if you can't find the information using the provided tools, you MUST "
|
105 |
+
"say 'I don't know'. Don't try to make up an answer."
|
106 |
+
)
|
107 |
+
prompt = self.agent.agent.create_prompt(
|
108 |
+
tools=self.tools,
|
109 |
+
prefix = sys_msg
|
110 |
+
)
|
111 |
+
self.agent.agent.llm_chain.prompt = prompt
|
112 |
+
|
113 |
+
def _text_search(
|
114 |
+
self,
|
115 |
+
query: str
|
116 |
+
) -> str:
|
117 |
+
query = self.text_retriever.prep_inputs(query)
|
118 |
+
res = self.text_retriever(query)['answer']
|
119 |
+
return res
|
120 |
+
|
121 |
+
def _tabular_search(
|
122 |
+
self,
|
123 |
+
query: str
|
124 |
+
) -> str:
|
125 |
+
res = self.csv_agent.run(query)
|
126 |
+
return res
|
127 |
+
|
128 |
+
def _chart_search(
|
129 |
+
self,
|
130 |
+
image,
|
131 |
+
query: str
|
132 |
+
) -> str:
|
133 |
+
image = Image.open(image)
|
134 |
+
res = self.chart_model.chart_qa(image, query)
|
135 |
+
return res
|
136 |
+
|
137 |
+
def _init_chart_search_tool(
|
138 |
+
self,
|
139 |
+
title: str
|
140 |
+
) -> None:
|
141 |
+
title = title
|
142 |
+
description = f"""
|
143 |
+
Use this tool when searching for information on charts.
|
144 |
+
With this tool you can answer the question about related chart.
|
145 |
+
You should ask simple question about a chart, then the tool will give you number.
|
146 |
+
This chart is called {title}.
|
147 |
+
"""
|
148 |
+
|
149 |
+
self.chart_search_tool = StructuredTool(
|
150 |
+
func=self._chart_search,
|
151 |
+
description=description,
|
152 |
+
name="Ask over charts"
|
153 |
+
)
|
154 |
+
|
155 |
+
def _init_tabular_search_tool(
|
156 |
+
self,
|
157 |
+
file_: Dict[str, any]
|
158 |
+
) -> None:
|
159 |
+
|
160 |
+
|
161 |
+
description = f"""
|
162 |
+
Use this tool when searching for tabular information.
|
163 |
+
With this tool you could get access to table.
|
164 |
+
This table title is "{title}" and the names of the columns in this table: {columns}
|
165 |
+
"""
|
166 |
+
|
167 |
+
self.tabular_search_tool = langchain.agents.Tool(
|
168 |
+
func=self._tabular_search,
|
169 |
+
description=description,
|
170 |
+
name="search tabular information"
|
171 |
+
)
|
172 |
+
|
173 |
+
def _define_appropriate_file(
|
174 |
+
self,
|
175 |
+
question: str
|
176 |
+
) -> str:
|
177 |
+
''' Определяет по описаниям таблиц в какой из них может содержаться ответ на вопрос.
|
178 |
+
Возвращает номер таблицы по шаблону "Table №1" или "None of the tables" '''
|
179 |
+
|
180 |
+
message = 'I have list of descriptions: \n'
|
181 |
+
k = 0
|
182 |
+
|
183 |
+
for description in self.file_descriptions:
|
184 |
+
k += 1
|
185 |
+
str_description = f""" {k}) description for File №{description['number']}: """
|
186 |
+
for key, value in description.items():
|
187 |
+
string_val = str(key) + ' : ' + str(value) + '\n'
|
188 |
+
str_description += string_val
|
189 |
+
message += str_description
|
190 |
+
print(message)
|
191 |
+
question = f""" How do you think, which file can help answer the question: "{question}" .
|
192 |
+
Your answer MUST be specific,
|
193 |
+
for example if you think that File №2 can help answer the question, you MUST just write "File №2!".
|
194 |
+
If you think that none of the files can help answer the question just write "None of the files!"
|
195 |
+
Don't include to answer information about your thinking.
|
196 |
+
"""
|
197 |
+
message += question
|
198 |
+
|
199 |
+
res = self.llm([HumanMessage(content=message)])
|
200 |
+
print(res.content)
|
201 |
+
print(res.content[:-1])
|
202 |
+
return res.content[:-1]
|
203 |
+
|
utils/functions.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pandas as pd
|
3 |
+
from langchain.document_loaders import PyPDFLoader
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
import torch
|
6 |
+
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
def make_descriptions(file, title):
|
10 |
+
if Path(file).suffix == '.csv':
|
11 |
+
# print(file)
|
12 |
+
df = pd.read_csv(file)
|
13 |
+
print(df.head())
|
14 |
+
columns = list(df.columns)
|
15 |
+
print(columns)
|
16 |
+
table_description0 = {
|
17 |
+
'path': 'random',
|
18 |
+
'number': 1,
|
19 |
+
'columns': ["clothes", "animals", "students"],
|
20 |
+
'title': "fashionable student clothes"
|
21 |
+
}
|
22 |
+
|
23 |
+
table_description1 = {
|
24 |
+
'path': file,
|
25 |
+
'number': 2,
|
26 |
+
'columns': columns,
|
27 |
+
'title': title
|
28 |
+
}
|
29 |
+
|
30 |
+
table_descriptions = [table_description0, table_description1]
|
31 |
+
return table_descriptions
|
32 |
+
else:
|
33 |
+
file_description = {
|
34 |
+
'path': file,
|
35 |
+
'number': 1,
|
36 |
+
'title': title
|
37 |
+
}
|
38 |
+
file_descriptions = [file_description]
|
39 |
+
return file_descriptions
|
40 |
+
|
41 |
+
|
42 |
+
def make_documents(pdf):
|
43 |
+
loader = PyPDFLoader(pdf)
|
44 |
+
documents = loader.load()
|
45 |
+
|
46 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0, separator='\n')
|
47 |
+
documents = text_splitter.split_documents(documents)
|
48 |
+
return documents
|
49 |
+
|
50 |
+
class Matcha_model:
|
51 |
+
|
52 |
+
def __init__(self) -> None:
|
53 |
+
# torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png', 'chart_example.png')
|
54 |
+
# torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1081.png', 'chart_example_2.png')
|
55 |
+
# torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/18143564004789.png', 'chart_example_3.png')
|
56 |
+
# torch.hub.download_url_to_file('https://sharkcoder.com/files/article/matplotlib-bar-plot.png', 'chart_example_4.png')
|
57 |
+
|
58 |
+
self.model_name = "google/matcha-chartqa"
|
59 |
+
self.model = Pix2StructForConditionalGeneration.from_pretrained(self.model_name)
|
60 |
+
self.processor = Pix2StructProcessor.from_pretrained(self.model_name)
|
61 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
62 |
+
self.model.to(self.device)
|
63 |
+
|
64 |
+
def _filter_output(self, output):
|
65 |
+
return output.replace("<0x0A>", "")
|
66 |
+
|
67 |
+
def chart_qa(self, image, question: str) -> str:
|
68 |
+
inputs = self.processor(images=image, text=question, return_tensors="pt").to(self.device)
|
69 |
+
predictions = self.model.generate(**inputs, max_new_tokens=512)
|
70 |
+
return self._filter_output(self.processor.decode(predictions[0], skip_special_tokens=True))
|
71 |
+
|
72 |
+
|