Spaces:
Runtime error
Runtime error
File size: 9,445 Bytes
339af39 9cbd705 339af39 995256c 339af39 995256c 339af39 9cbd705 339af39 056acd4 339af39 995256c 339af39 056acd4 339af39 a920174 339af39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from openai import OpenAI
import gradio as gr
import os
import json
import html
import random
import datetime
api_key = os.environ.get('FEATHERLESS_API_KEY')
client = OpenAI(
base_url="https://api.featherless.ai/v1",
api_key=api_key
)
# from https://github.com/av/klmbr/blob/ca2967123d171fc6d91c329c40e5050a86088446/klmbr/main.py
# I sure which I could import this, but can't figure out how to make HF spaces run this as a module
# and not a file.
import random
mods = [
"capitalize",
"diacritic",
'leetspeak',
"remove_vowel",
]
def klimbr_randomize(text, percentage):
if not text:
return "", {} # Return empty string and empty mapping if input is empty
if not 0 <= percentage <= 100:
raise ValueError("Percentage must be between 0 and 100")
words = text.split()
chars = list(text)
num_chars_to_modify = max(1, int(len(chars) * (percentage / 100)))
indices_to_modify = random.sample(range(len(chars)), num_chars_to_modify)
word_mapping = {}
for idx in indices_to_modify:
modification = random.choice(mods)
# Find the word that contains the current character
current_length = 0
for word_idx, word in enumerate(words):
if current_length <= idx < current_length + len(word):
original_word = word
word_start_idx = current_length
break
current_length += len(word) + 1 # +1 for the space
else:
# If we're here, we're likely dealing with a space or the last character
continue
if modification == "capitalize":
chars[idx] = chars[idx].swapcase()
elif modification == "diacritic":
if chars[idx].isalpha():
diacritics = ["̀", "́", "̂", "̃", "̈", "̄", "̆", "̇", "̊", "̋"]
chars[idx] = chars[idx] + random.choice(diacritics)
elif modification == "leetspeak":
leetspeak_map = {
"a": "4", "e": "3", "i": "1", "o": "0", "s": "5",
"t": "7", "b": "8", "g": "9", "l": "1",
}
chars[idx] = leetspeak_map.get(chars[idx].lower(), chars[idx])
elif modification == "remove_vowel":
if chars[idx].lower() in "aeiou":
chars[idx] = ""
modified_word = "".join(
chars[word_start_idx : word_start_idx + len(original_word)]
)
if modified_word != original_word:
# Clean up both the modified word and the original word
cleaned_modified_word = modified_word.rstrip('.,')
cleaned_original_word = original_word.rstrip('.,')
word_mapping[cleaned_modified_word] = cleaned_original_word
modified_text = "".join(chars)
return modified_text, word_mapping
## end of klimbr inclusion
klimbr_cache = {}
def memoized_klimbr(message, percentage, extra, last=False):
key = (message, percentage, extra)
# _always_ re-randomize the last message
if last and key in klimbr_cache:
klimbr_cache.pop(key)
if key not in klimbr_cache:
klimbr_cache[key] = klimbr_randomize(message, percentage)[0]
return klimbr_cache[key]
LOG_TRANSLATIONS=os.environ.get('LOG_TRANSLATIONS', True)
def klimberize_conversation(message, history, percentage, log=LOG_TRANSLATIONS):
# we memoize the klimbrization of strings.
# this is to work with the gradio chat interface model
# so that messages are not _re_-randomized at each conversation turn
klimbred_history = [
(memoized_klimbr(human, percentage, index), assistant)
for index, (human, assistant) in enumerate(history)
]
klimbred_message = memoized_klimbr(message, percentage, len(history), last=True)
if log:
for original, kbed in zip([*[u for u,a in history], message], [*[u for u,a in klimbred_history], klimbred_message]):
print(f"Translated '{original}' as '{kbed}'")
return (klimbred_message, klimbred_history)
def respond(message, history, model, klimbr_percentage):
history_openai_format = []
message, history = klimberize_conversation(message, history, klimbr_percentage)
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": message})
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
temperature=1.0,
stream=True,
max_tokens=2000,
extra_headers={
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/klimbr-demo',
'X-Title': "Klimbr demo space"
}
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
escaped_content = html.escape(content)
partial_message += escaped_content
yield partial_message
logo = open('./logo.svg').read()
# we chose a few models across the smaller model classes to give a sense of the technique
MODEL_CHOICES = {
"llama2-13b-4k": [
"NousResearch/Nous-Hermes-Llama2-13b",
],
"llama3-8b-8k": [
"meta-llama/Meta-Llama-3-8B-Instruct",
"NousResearch/Hermes-2-Theta-Llama-3-8B",
"aaditya/Llama3-OpenBioLLM-8B",
"elyza/Llama-3-ELYZA-JP-8B",
"mlabonne/NeuralDaredevil-8B-abliterated",
],
"llama31-8b-16k": [
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"shenzhi-wang/Llama3.1-8B-Chinese-Chat",
"AXCXEPT/Llama-3.1-8B-EZO-1.1-it",
"mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated",
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
],
"mistral-v02-7b-lc": [
"HuggingFaceH4/zephyr-7b-beta",
"mlabonne/NeuralDaredevil-7B",
"HuggingFaceH4/zephyr-7b-alpha",
],
"mistral-nemo-12b-lc": [
"mistralai/Mistral-Nemo-Instruct-2407",
],
"rwvk-14b-lc": [
"m8than/apple-rwkv-1-c-14b",
],
}
def build_model_choices():
all_choices = []
for model_class_name in MODEL_CHOICES:
model_class = MODEL_CHOICES[model_class_name]
all_choices += [ (f"{model_id} ({model_class_name})", model_id) for model_id in model_class ]
return all_choices
model_choices = build_model_choices()
def initial_model(referer=None):
return "mistralai/Mistral-Nemo-Instruct-2407"
# let's use a random but different model each day.
# key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
# o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
# return o.choice(model_choices)[1]
title_text="Klimbr token input pre-processor demo space"
klimbr_url="https://github.com/av/klmbr"
css = """
.logo-mark { fill: #ffe184; }
/* from https://github.com/gradio-app/gradio/issues/4001
* necessary as putting ChatInterface in gr.Blocks changes behaviour
*/
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
.lead-text {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
padding: 20px;
box-sizing: border-box;
}
.content {
max-width: 60vh;
text-align: center;
font-size: 15pt;
}
.h1 {
margin-bottom: 20px;
}
"""
with gr.Blocks(title_text, css=css) as demo:
gr.HTML(f"""
<div class="lead-text">
<h1 align="center"><a href="{klimbr_url}">Klimbr</a> demo space</h1>
<div class="content">
<p>
Klimbr is a technique to increase entropy in LLM outputs
by adding entropy to the input prompt prior to inference.
</p>
<p>
For details on the technique see <a href="{klimbr_url}">the klimbr github</a>
or the source code of this space.
</p>
</div>
""")
# hidden_state = gr.State(value=initial_model)
percentage = gr.Slider(
minimum=0,
maximum=1,
value=0.65,
label="Percentage of input text to randomize"
)
with gr.Row():
model_selector = gr.Dropdown(
label="Select your Model",
choices=model_choices,
value=initial_model,
# value=hidden_state,
scale=4
)
gr.Button(
value="Visit Model Card ↗️",
scale=1
).click(
inputs=[model_selector],
js="(model_selection) => { window.open(`https://huggingface.co/${model_selection}`, '_blank') }",
fn=None,
)
gr.ChatInterface(
respond,
additional_inputs=[model_selector, percentage],
head=""",
<script>console.log("Hello from gradio!")</script>
""",
concurrency_limit=5
)
gr.HTML(f"""
<p align="center">
Inference by <a href="https://featherless.ai">{logo}</a>
</p>
""")
def update_initial_model_choice(request: gr.Request):
return initial_model(request.headers.get('referer'))
demo.load(update_initial_model_choice, outputs=model_selector)
demo.launch()
|