Spaces:
Runtime error
Runtime error
:tada: initial commit
Browse files- README.md +4 -4
- app/__main__.py +212 -0
- app/klimbr.py +66 -0
- logo.svg +3 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
title: Klimbr Demo
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
1 |
---
|
2 |
title: Klimbr Demo
|
3 |
+
emoji: π§πΎββοΈ
|
4 |
colorFrom: green
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.37.2
|
8 |
+
app_file: app/__main__.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
A space demoing the [klimbr](https://github.com/av/klmbr) input prompt randomization method.
|
app/__main__.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import html
|
6 |
+
import random
|
7 |
+
import datetime
|
8 |
+
from . import klimbr
|
9 |
+
klimbrize_string = klimbr.randomize
|
10 |
+
|
11 |
+
api_key = os.environ.get('FEATHERLESS_API_KEY')
|
12 |
+
client = OpenAI(
|
13 |
+
base_url="https://api.featherless.ai/v1",
|
14 |
+
api_key=api_key
|
15 |
+
)
|
16 |
+
|
17 |
+
klimbr_cache = {}
|
18 |
+
def memoized_klimbr(message, percentage, extra):
|
19 |
+
key = (message, percentage, extra)
|
20 |
+
if key not in klimbr_cache:
|
21 |
+
klimbr_cache[key] = klimbrize_string(message, percentage)[0]
|
22 |
+
|
23 |
+
return klimbr_cache[key]
|
24 |
+
|
25 |
+
def klimberize_conversation(message, history, percentage):
|
26 |
+
# we memoize the klimbrization of strings.
|
27 |
+
# this is to work with the gradio chat interface model
|
28 |
+
# so that messages are not _re_-randomized at each conversation turn
|
29 |
+
|
30 |
+
klimbred_history = [
|
31 |
+
(memoized_klimbr(human, percentage, index), assistant)
|
32 |
+
for index, (human, assistant) in enumerate(history)
|
33 |
+
]
|
34 |
+
|
35 |
+
klimbred_message = memoized_klimbr(message, percentage, len(history))
|
36 |
+
|
37 |
+
return (klimbred_message, klimbred_history)
|
38 |
+
|
39 |
+
def respond(message, history, model, klimbr_percentage):
|
40 |
+
history_openai_format = []
|
41 |
+
|
42 |
+
message, history = klimberize_conversation(message, history, klimbr_percentage)
|
43 |
+
|
44 |
+
for human, assistant in history:
|
45 |
+
history_openai_format.append({"role": "user", "content": human })
|
46 |
+
history_openai_format.append({"role": "assistant", "content":assistant})
|
47 |
+
history_openai_format.append({"role": "user", "content": message})
|
48 |
+
|
49 |
+
response = client.chat.completions.create(
|
50 |
+
model=model,
|
51 |
+
messages= history_openai_format,
|
52 |
+
temperature=1.0,
|
53 |
+
stream=True,
|
54 |
+
max_tokens=2000,
|
55 |
+
extra_headers={
|
56 |
+
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/klimbr-demo',
|
57 |
+
'X-Title': "Klimbr demo space"
|
58 |
+
}
|
59 |
+
)
|
60 |
+
|
61 |
+
partial_message = ""
|
62 |
+
for chunk in response:
|
63 |
+
if chunk.choices[0].delta.content is not None:
|
64 |
+
content = chunk.choices[0].delta.content
|
65 |
+
escaped_content = html.escape(content)
|
66 |
+
partial_message += escaped_content
|
67 |
+
yield partial_message
|
68 |
+
|
69 |
+
logo = open('./logo.svg').read()
|
70 |
+
|
71 |
+
# we chose a few models across the smaller model classes to give a sense of the technique
|
72 |
+
MODEL_CHOICES = {
|
73 |
+
"llama2-13b-4k": [
|
74 |
+
"NousResearch/Nous-Hermes-Llama2-13b",
|
75 |
+
],
|
76 |
+
"llama3-8b-8k": [
|
77 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
78 |
+
"NousResearch/Hermes-2-Theta-Llama-3-8B",
|
79 |
+
"aaditya/Llama3-OpenBioLLM-8B",
|
80 |
+
"elyza/Llama-3-ELYZA-JP-8B",
|
81 |
+
"mlabonne/NeuralDaredevil-8B-abliterated",
|
82 |
+
],
|
83 |
+
"llama31-8b-16k": [
|
84 |
+
"meta-llama/Meta-Llama-3.1-8B-Instruct",
|
85 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
86 |
+
"shenzhi-wang/Llama3.1-8B-Chinese-Chat",
|
87 |
+
"AXCXEPT/Llama-3.1-8B-EZO-1.1-it",
|
88 |
+
"mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated",
|
89 |
+
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct",
|
90 |
+
],
|
91 |
+
"mistral-v02-7b-lc": [
|
92 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
93 |
+
"mlabonne/NeuralDaredevil-7B",
|
94 |
+
"HuggingFaceH4/zephyr-7b-alpha",
|
95 |
+
],
|
96 |
+
"mistral-nemo-12b-lc": [
|
97 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
98 |
+
],
|
99 |
+
"rwvk-14b-lc": [
|
100 |
+
"m8than/apple-rwkv-1-c-14b",
|
101 |
+
],
|
102 |
+
}
|
103 |
+
|
104 |
+
def build_model_choices():
|
105 |
+
all_choices = []
|
106 |
+
for model_class_name in MODEL_CHOICES:
|
107 |
+
model_class = MODEL_CHOICES[model_class_name]
|
108 |
+
all_choices += [ (f"{model_id} ({model_class_name})", model_id) for model_id in model_class ]
|
109 |
+
|
110 |
+
return all_choices
|
111 |
+
|
112 |
+
model_choices = build_model_choices()
|
113 |
+
|
114 |
+
def initial_model(referer=None):
|
115 |
+
return "mistralai/Mistral-Nemo-Instruct-2407"
|
116 |
+
# let's use a random but different model each day.
|
117 |
+
# key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
|
118 |
+
# o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
|
119 |
+
# return o.choice(model_choices)[1]
|
120 |
+
|
121 |
+
title_text="Klimbr token input pre-processor demo space"
|
122 |
+
klimbr_url="https://github.com/av/klmbr"
|
123 |
+
css = """
|
124 |
+
.logo-mark { fill: #ffe184; }
|
125 |
+
|
126 |
+
/* from https://github.com/gradio-app/gradio/issues/4001
|
127 |
+
* necessary as putting ChatInterface in gr.Blocks changes behaviour
|
128 |
+
*/
|
129 |
+
|
130 |
+
.contain { display: flex; flex-direction: column; }
|
131 |
+
.gradio-container { height: 100vh !important; }
|
132 |
+
#component-0 { height: 100%; }
|
133 |
+
#chatbot { flex-grow: 1; overflow: auto;}
|
134 |
+
.lead-text {
|
135 |
+
display: flex;
|
136 |
+
flex-direction: column;
|
137 |
+
align-items: center;
|
138 |
+
justify-content: center;
|
139 |
+
padding: 20px;
|
140 |
+
box-sizing: border-box;
|
141 |
+
}
|
142 |
+
|
143 |
+
.content {
|
144 |
+
max-width: 60vh;
|
145 |
+
text-align: center;
|
146 |
+
font-size: 15pt;
|
147 |
+
}
|
148 |
+
|
149 |
+
.h1 {
|
150 |
+
margin-bottom: 20px;
|
151 |
+
}
|
152 |
+
"""
|
153 |
+
with gr.Blocks(title_text, css=css) as demo:
|
154 |
+
gr.HTML(f"""
|
155 |
+
<div class="lead-text">
|
156 |
+
<h1 align="center"><a href="{klimbr_url}">Klimbr</a> demo space</h1>
|
157 |
+
<div class="content">
|
158 |
+
<p>
|
159 |
+
Klimbr is a technique to increase entropy in LLM outputs
|
160 |
+
by adding entropy to the input prompt prior to inference.
|
161 |
+
</p>
|
162 |
+
<p>
|
163 |
+
For details on the technique see <a href="{klimbr_url}">the klimbr github</a>
|
164 |
+
or the source code of this space.
|
165 |
+
</p>
|
166 |
+
</div>
|
167 |
+
""")
|
168 |
+
|
169 |
+
# hidden_state = gr.State(value=initial_model)
|
170 |
+
percentage = gr.Slider(
|
171 |
+
minimum=0,
|
172 |
+
maximum=1,
|
173 |
+
value=0.15,
|
174 |
+
label="Percentage of input text to randomize"
|
175 |
+
)
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
model_selector = gr.Dropdown(
|
179 |
+
label="Select your Model",
|
180 |
+
choices=model_choices,
|
181 |
+
value=initial_model,
|
182 |
+
# value=hidden_state,
|
183 |
+
scale=4
|
184 |
+
)
|
185 |
+
gr.Button(
|
186 |
+
value="Visit Model Card βοΈ",
|
187 |
+
scale=1
|
188 |
+
).click(
|
189 |
+
inputs=[model_selector],
|
190 |
+
js="(model_selection) => { window.open(`https://huggingface.co/${model_selection}`, '_blank') }",
|
191 |
+
fn=None,
|
192 |
+
)
|
193 |
+
|
194 |
+
gr.ChatInterface(
|
195 |
+
respond,
|
196 |
+
additional_inputs=[model_selector, percentage],
|
197 |
+
head=""",
|
198 |
+
<script>console.log("Hello from gradio!")</script>
|
199 |
+
""",
|
200 |
+
concurrency_limit=5
|
201 |
+
)
|
202 |
+
gr.HTML(f"""
|
203 |
+
<p align="center">
|
204 |
+
Inference by <a href="https://featherless.ai">{logo}</a>
|
205 |
+
</p>
|
206 |
+
""")
|
207 |
+
def update_initial_model_choice(request: gr.Request):
|
208 |
+
return initial_model(request.headers.get('referer'))
|
209 |
+
|
210 |
+
demo.load(update_initial_model_choice, outputs=model_selector)
|
211 |
+
|
212 |
+
demo.launch()
|
app/klimbr.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from https://github.com/av/klmbr/blob/ca2967123d171fc6d91c329c40e5050a86088446/klmbr/main.py
|
2 |
+
import random
|
3 |
+
|
4 |
+
mods = [
|
5 |
+
"capitalize",
|
6 |
+
"diacritic",
|
7 |
+
'leetspeak',
|
8 |
+
"remove_vowel",
|
9 |
+
]
|
10 |
+
|
11 |
+
def randomize(text, percentage):
|
12 |
+
if not text:
|
13 |
+
return "", {} # Return empty string and empty mapping if input is empty
|
14 |
+
|
15 |
+
if not 0 <= percentage <= 100:
|
16 |
+
raise ValueError("Percentage must be between 0 and 100")
|
17 |
+
|
18 |
+
words = text.split()
|
19 |
+
chars = list(text)
|
20 |
+
num_chars_to_modify = max(1, int(len(chars) * (percentage / 100)))
|
21 |
+
indices_to_modify = random.sample(range(len(chars)), num_chars_to_modify)
|
22 |
+
word_mapping = {}
|
23 |
+
|
24 |
+
for idx in indices_to_modify:
|
25 |
+
modification = random.choice(mods)
|
26 |
+
|
27 |
+
# Find the word that contains the current character
|
28 |
+
current_length = 0
|
29 |
+
for word_idx, word in enumerate(words):
|
30 |
+
if current_length <= idx < current_length + len(word):
|
31 |
+
original_word = word
|
32 |
+
word_start_idx = current_length
|
33 |
+
break
|
34 |
+
current_length += len(word) + 1 # +1 for the space
|
35 |
+
else:
|
36 |
+
# If we're here, we're likely dealing with a space or the last character
|
37 |
+
continue
|
38 |
+
|
39 |
+
if modification == "capitalize":
|
40 |
+
chars[idx] = chars[idx].swapcase()
|
41 |
+
elif modification == "diacritic":
|
42 |
+
if chars[idx].isalpha():
|
43 |
+
diacritics = ["Μ", "Μ", "Μ", "Μ", "Μ", "Μ", "Μ", "Μ", "Μ", "Μ"]
|
44 |
+
chars[idx] = chars[idx] + random.choice(diacritics)
|
45 |
+
elif modification == "leetspeak":
|
46 |
+
leetspeak_map = {
|
47 |
+
"a": "4", "e": "3", "i": "1", "o": "0", "s": "5",
|
48 |
+
"t": "7", "b": "8", "g": "9", "l": "1",
|
49 |
+
}
|
50 |
+
chars[idx] = leetspeak_map.get(chars[idx].lower(), chars[idx])
|
51 |
+
elif modification == "remove_vowel":
|
52 |
+
if chars[idx].lower() in "aeiou":
|
53 |
+
chars[idx] = ""
|
54 |
+
|
55 |
+
modified_word = "".join(
|
56 |
+
chars[word_start_idx : word_start_idx + len(original_word)]
|
57 |
+
)
|
58 |
+
|
59 |
+
if modified_word != original_word:
|
60 |
+
# Clean up both the modified word and the original word
|
61 |
+
cleaned_modified_word = modified_word.rstrip('.,')
|
62 |
+
cleaned_original_word = original_word.rstrip('.,')
|
63 |
+
word_mapping[cleaned_modified_word] = cleaned_original_word
|
64 |
+
|
65 |
+
modified_text = "".join(chars)
|
66 |
+
return modified_text, word_mapping
|
logo.svg
ADDED
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
openai
|