Spaces:
Runtime error
Runtime error
File size: 4,391 Bytes
75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 75e181a a7d0f02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import tensorflow as tf
import os
import json
import pandas as pd
import re
import numpy as np
import time
import matplotlib.pyplot as plt
import collections
import random
import requests
import json
import pickle
from math import sqrt
from PIL import Image
from tqdm.auto import tqdm
from model import CNN_Encoder, TransformerEncoderLayer, Embeddings, TransformerDecoderLayer, ImageCaptioningModel
DATASET_PATH = "coco2017"
MAX_LENGTH = 40
MAX_VOCABULARY = 12000
BATCH_SIZE = 64
BUFFER_SIZE = 1000
EMBEDDING_DIM = 512
UNITS = 512
EPOCHS = 1
with open(f"{DATASET_PATH}/annotations/captions_train2017.json", "r") as f:
data = json.load(f)
data = data["annotations"]
img_cap_pairs = []
for sample in data:
img_name = "%012d.jpg" % sample["image_id"]
img_cap_pairs.append([img_name, sample["caption"]])
captions = pd.DataFrame(img_cap_pairs, columns=["image", "caption"])
captions["image"] = captions["image"].apply(lambda x: f"{DATASET_PATH}/train2017/{x}")
captions = captions.sample(70000)
captions = captions.reset_index(drop=True)
captions.head()
def preprocessing(text):
text = text.lower()
text = re.sub(r"[^\w\s]", "", text)
text = re.sub("\s+", " ", text)
text = text.strip()
text = "[start] " + text + " [end]"
return text
captions["caption"] = captions["caption"].apply(preprocessing)
captions.head()
tokenizer = tf.keras.layers.TextVectorization(
max_tokens=MAX_VOCABULARY, standardize=None, output_sequence_length=MAX_LENGTH
)
tokenizer.adapt(captions["caption"])
pickle.dump(
tokenizer.get_vocabulary(),
open("./vocabulary/vocab_coco.file", "wb"),
)
word2idx = tf.keras.layers.StringLookup(
mask_token="", vocabulary=tokenizer.get_vocabulary()
)
idx2word = tf.keras.layers.StringLookup(
mask_token="", vocabulary=tokenizer.get_vocabulary(), invert=True
)
img_to_cap_vector = collections.defaultdict(list)
for img, cap in zip(captions["image"], captions["caption"]):
img_to_cap_vector[img].append(cap)
img_keys = list(img_to_cap_vector.keys())
random.shuffle(img_keys)
slice_index = int(len(img_keys) * 0.8)
img_name_train_keys, img_name_test_keys = (
img_keys[:slice_index],
img_keys[slice_index:],
)
train_img = []
train_caption = []
for imgt in img_name_train_keys:
capt_len = len(img_to_cap_vector[imgt])
train_img.extend([imgt] * capt_len)
train_caption.extend(img_to_cap_vector[imgt])
test_img = []
test_caption = []
for imgtest in img_name_test_keys:
capv_len = len(img_to_cap_vector[imgtest])
test_img.extend([imgtest] * capv_len)
test_caption.extend(img_to_cap_vector[imgtest])
len(train_img), len(train_caption), len(test_img), len(test_caption)
def load_data(img_path, caption):
img = tf.io.read_file(img_path)
img = tf.io.decode_jpeg(img, channels=3)
img = tf.keras.layers.Resizing(299, 299)(img)
img = tf.keras.applications.inception_v3.preprocess_input(img)
caption = tokenizer(caption)
return img, caption
train_dataset = tf.data.Dataset.from_tensor_slices((train_img, train_caption))
train_dataset = (
train_dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
.shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE)
)
test_dataset = tf.data.Dataset.from_tensor_slices((test_img, test_caption))
test_dataset = (
test_dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
.shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE)
)
image_augmentation = tf.keras.Sequential(
[
tf.keras.layers.RandomFlip("horizontal"),
tf.keras.layers.RandomRotation(0.2),
tf.keras.layers.RandomContrast(0.3),
]
)
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
cnn_model = CNN_Encoder()
caption_model = ImageCaptioningModel(
cnn_model=cnn_model,
encoder=encoder,
decoder=decoder,
image_aug=image_augmentation,
)
cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False, reduction="none"
)
early_stopping = tf.keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)
caption_model.compile(optimizer=tf.keras.optimizers.Adam(), loss=cross_entropy)
history = caption_model.fit(
train_dataset,
epochs=EPOCHS,
validation_data=test_dataset,
callbacks=[early_stopping],
)
caption_model.save_weights("./image-caption-generator/models/trained_coco_weights_2.h5")
|