Spaces:
Runtime error
Runtime error
Training and Saving the models
Browse files- training.py +383 -0
training.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import pandas as pd
|
5 |
+
import re
|
6 |
+
import numpy as np
|
7 |
+
import time
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import collections
|
10 |
+
import random
|
11 |
+
import requests
|
12 |
+
import json
|
13 |
+
import pickle
|
14 |
+
from math import sqrt
|
15 |
+
from PIL import Image
|
16 |
+
from tqdm.auto import tqdm
|
17 |
+
|
18 |
+
DATASET_PATH = './coco2017/'
|
19 |
+
MAX_LENGTH = 40
|
20 |
+
MAX_VOCABULARY = 12000
|
21 |
+
BATCH_SIZE = 64
|
22 |
+
BUFFER_SIZE = 1000
|
23 |
+
EMBEDDING_DIM = 512
|
24 |
+
UNITS = 512
|
25 |
+
EPOCHS = 5
|
26 |
+
|
27 |
+
with open(f'{DATASET_PATH}/annotations/captions_train2017.json', 'r') as f:
|
28 |
+
data = json.load(f)
|
29 |
+
data = data['annotations']
|
30 |
+
|
31 |
+
img_cap_pairs = []
|
32 |
+
|
33 |
+
for sample in data:
|
34 |
+
img_name = '%012d.jpg' % sample['image_id']
|
35 |
+
img_cap_pairs.append([img_name, sample['caption']])
|
36 |
+
|
37 |
+
captions = pd.DataFrame(img_cap_pairs, columns=['image', 'caption'])
|
38 |
+
captions['image'] = captions['image'].apply(
|
39 |
+
lambda x: f'{DATASET_PATH}/train2017/{x}'
|
40 |
+
)
|
41 |
+
captions = captions.sample(70000)
|
42 |
+
captions = captions.reset_index(drop=True)
|
43 |
+
captions.head()
|
44 |
+
|
45 |
+
def preprocessing(text):
|
46 |
+
text = text.lower()
|
47 |
+
text = re.sub(r'[^\w\s]', '', text)
|
48 |
+
text = re.sub('\s+', ' ', text)
|
49 |
+
text = text.strip()
|
50 |
+
text = '[start] ' + text + ' [end]'
|
51 |
+
return text
|
52 |
+
|
53 |
+
captions['caption'] = captions['caption'].apply(preprocessing)
|
54 |
+
captions.head()
|
55 |
+
|
56 |
+
tokenizer = tf.keras.layers.TextVectorization(
|
57 |
+
max_tokens=MAX_VOCABULARY,
|
58 |
+
standardize=None,
|
59 |
+
output_sequence_length=MAX_LENGTH)
|
60 |
+
|
61 |
+
tokenizer.adapt(captions['caption'])
|
62 |
+
|
63 |
+
pickle.dump(tokenizer.get_vocabulary(), open('./image-caption-generator/vocabulary/vocab_coco.file', 'wb'))
|
64 |
+
|
65 |
+
word2idx = tf.keras.layers.StringLookup(
|
66 |
+
mask_token = "",
|
67 |
+
vocabulary = tokenizer.get_vocabulary()
|
68 |
+
)
|
69 |
+
|
70 |
+
idx2word = tf.keras.layers.StringLookup(
|
71 |
+
mask_token = "",
|
72 |
+
vocabulary = tokenizer.get_vocabulary(),
|
73 |
+
invert = True
|
74 |
+
)
|
75 |
+
|
76 |
+
img_to_cap_vector = collections.defaultdict(list)
|
77 |
+
for img, cap in zip(captions['image'], captions['caption']):
|
78 |
+
img_to_cap_vector[img].append(cap)
|
79 |
+
|
80 |
+
img_keys = list(img_to_cap_vector.keys())
|
81 |
+
random.shuffle(img_keys)
|
82 |
+
|
83 |
+
slice_index = int(len(img_keys)*0.8)
|
84 |
+
img_name_train_keys, img_name_test_keys = (img_keys[:slice_index], img_keys[slice_index:])
|
85 |
+
|
86 |
+
train_img = []
|
87 |
+
train_caption = []
|
88 |
+
for imgt in img_name_train_keys:
|
89 |
+
capt_len = len(img_to_cap_vector[imgt])
|
90 |
+
train_img.extend([imgt]*capt_len)
|
91 |
+
train_caption.extend(img_to_cap_vector[imgt])
|
92 |
+
|
93 |
+
test_img = []
|
94 |
+
test_caption = []
|
95 |
+
for imgtest in img_name_test_keys:
|
96 |
+
capv_len = len(img_to_cap_vector[imgtest])
|
97 |
+
test_img.extend([imgtest]*capv_len)
|
98 |
+
test_caption.extend(img_to_cap_vector[imgtest])
|
99 |
+
|
100 |
+
len(train_img), len(train_caption), len(test_img), len(test_caption)
|
101 |
+
|
102 |
+
def load_data(img_path, caption):
|
103 |
+
img = tf.io.read_file(img_path)
|
104 |
+
img = tf.io.decode_jpeg(img, channels=3)
|
105 |
+
img = tf.keras.layers.Resizing(299, 299)(img)
|
106 |
+
img = tf.keras.applications.inception_v3.preprocess_input(img)
|
107 |
+
caption = tokenizer(caption)
|
108 |
+
return img, caption
|
109 |
+
|
110 |
+
train_dataset = tf.data.Dataset.from_tensor_slices((train_img,train_caption))
|
111 |
+
|
112 |
+
train_dataset = train_dataset.map(load_data, num_parallel_calls = tf.data.AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
|
113 |
+
|
114 |
+
test_dataset = tf.data.Dataset.from_tensor_slices((test_img,test_caption))
|
115 |
+
|
116 |
+
test_dataset = test_dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
|
117 |
+
|
118 |
+
image_augmentation = tf.keras.Sequential(
|
119 |
+
[
|
120 |
+
tf.keras.layers.RandomFlip("horizontal"),
|
121 |
+
tf.keras.layers.RandomRotation(0.2),
|
122 |
+
tf.keras.layers.RandomContrast(0.3),
|
123 |
+
]
|
124 |
+
)
|
125 |
+
|
126 |
+
def CNN_Encoder():
|
127 |
+
inception_v3 = tf.keras.applications.InceptionV3(
|
128 |
+
include_top=False,
|
129 |
+
weights='imagenet'
|
130 |
+
)
|
131 |
+
|
132 |
+
output = inception_v3.output
|
133 |
+
output = tf.keras.layers.Reshape(
|
134 |
+
(-1, output.shape[-1]))(output)
|
135 |
+
|
136 |
+
cnn_model = tf.keras.models.Model(inception_v3.input, output)
|
137 |
+
return cnn_model
|
138 |
+
|
139 |
+
|
140 |
+
class TransformerEncoderLayer(tf.keras.layers.Layer):
|
141 |
+
|
142 |
+
def __init__(self, embed_dim, num_heads):
|
143 |
+
super().__init__()
|
144 |
+
self.layer_norm_1 = tf.keras.layers.LayerNormalization()
|
145 |
+
self.layer_norm_2 = tf.keras.layers.LayerNormalization()
|
146 |
+
self.attention = tf.keras.layers.MultiHeadAttention(
|
147 |
+
num_heads=num_heads, key_dim=embed_dim)
|
148 |
+
self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")
|
149 |
+
|
150 |
+
|
151 |
+
def call(self, x, training):
|
152 |
+
x = self.layer_norm_1(x)
|
153 |
+
x = self.dense(x)
|
154 |
+
|
155 |
+
attn_output = self.attention(
|
156 |
+
query=x,
|
157 |
+
value=x,
|
158 |
+
key=x,
|
159 |
+
attention_mask=None,
|
160 |
+
training=training
|
161 |
+
)
|
162 |
+
|
163 |
+
x = self.layer_norm_2(x + attn_output)
|
164 |
+
return x
|
165 |
+
|
166 |
+
|
167 |
+
class Embeddings(tf.keras.layers.Layer):
|
168 |
+
|
169 |
+
def __init__(self, vocab_size, embed_dim, max_len):
|
170 |
+
super().__init__()
|
171 |
+
self.token_embeddings = tf.keras.layers.Embedding(
|
172 |
+
vocab_size, embed_dim)
|
173 |
+
self.position_embeddings = tf.keras.layers.Embedding(
|
174 |
+
max_len, embed_dim, input_shape=(None, max_len))
|
175 |
+
|
176 |
+
|
177 |
+
def call(self, input_ids):
|
178 |
+
length = tf.shape(input_ids)[-1]
|
179 |
+
position_ids = tf.range(start=0, limit=length, delta=1)
|
180 |
+
position_ids = tf.expand_dims(position_ids, axis=0)
|
181 |
+
|
182 |
+
token_embeddings = self.token_embeddings(input_ids)
|
183 |
+
position_embeddings = self.position_embeddings(position_ids)
|
184 |
+
|
185 |
+
return token_embeddings + position_embeddings
|
186 |
+
|
187 |
+
class TransformerDecoderLayer(tf.keras.layers.Layer):
|
188 |
+
|
189 |
+
def __init__(self, embed_dim, units, num_heads):
|
190 |
+
super().__init__()
|
191 |
+
self.embedding = Embeddings(
|
192 |
+
tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH)
|
193 |
+
|
194 |
+
self.attention_1 = tf.keras.layers.MultiHeadAttention(
|
195 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
|
196 |
+
)
|
197 |
+
self.attention_2 = tf.keras.layers.MultiHeadAttention(
|
198 |
+
num_heads=num_heads, key_dim=embed_dim, dropout=0.1
|
199 |
+
)
|
200 |
+
|
201 |
+
self.layernorm_1 = tf.keras.layers.LayerNormalization()
|
202 |
+
self.layernorm_2 = tf.keras.layers.LayerNormalization()
|
203 |
+
self.layernorm_3 = tf.keras.layers.LayerNormalization()
|
204 |
+
|
205 |
+
self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu")
|
206 |
+
self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim)
|
207 |
+
|
208 |
+
self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax")
|
209 |
+
|
210 |
+
self.dropout_1 = tf.keras.layers.Dropout(0.3)
|
211 |
+
self.dropout_2 = tf.keras.layers.Dropout(0.5)
|
212 |
+
|
213 |
+
|
214 |
+
def call(self, input_ids, encoder_output, training, mask=None):
|
215 |
+
embeddings = self.embedding(input_ids)
|
216 |
+
|
217 |
+
combined_mask = None
|
218 |
+
padding_mask = None
|
219 |
+
|
220 |
+
if mask is not None:
|
221 |
+
causal_mask = self.get_causal_attention_mask(embeddings)
|
222 |
+
padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
|
223 |
+
combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
|
224 |
+
combined_mask = tf.minimum(combined_mask, causal_mask)
|
225 |
+
|
226 |
+
attn_output_1 = self.attention_1(
|
227 |
+
query=embeddings,
|
228 |
+
value=embeddings,
|
229 |
+
key=embeddings,
|
230 |
+
attention_mask=combined_mask,
|
231 |
+
training=training
|
232 |
+
)
|
233 |
+
|
234 |
+
out_1 = self.layernorm_1(embeddings + attn_output_1)
|
235 |
+
|
236 |
+
attn_output_2 = self.attention_2(
|
237 |
+
query=out_1,
|
238 |
+
value=encoder_output,
|
239 |
+
key=encoder_output,
|
240 |
+
attention_mask=padding_mask,
|
241 |
+
training=training
|
242 |
+
)
|
243 |
+
|
244 |
+
out_2 = self.layernorm_2(out_1 + attn_output_2)
|
245 |
+
|
246 |
+
ffn_out = self.ffn_layer_1(out_2)
|
247 |
+
ffn_out = self.dropout_1(ffn_out, training=training)
|
248 |
+
ffn_out = self.ffn_layer_2(ffn_out)
|
249 |
+
|
250 |
+
ffn_out = self.layernorm_3(ffn_out + out_2)
|
251 |
+
ffn_out = self.dropout_2(ffn_out, training=training)
|
252 |
+
preds = self.out(ffn_out)
|
253 |
+
return preds
|
254 |
+
|
255 |
+
|
256 |
+
def get_causal_attention_mask(self, inputs):
|
257 |
+
input_shape = tf.shape(inputs)
|
258 |
+
batch_size, sequence_length = input_shape[0], input_shape[1]
|
259 |
+
i = tf.range(sequence_length)[:, tf.newaxis]
|
260 |
+
j = tf.range(sequence_length)
|
261 |
+
mask = tf.cast(i >= j, dtype="int32")
|
262 |
+
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
|
263 |
+
mult = tf.concat(
|
264 |
+
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
|
265 |
+
axis=0
|
266 |
+
)
|
267 |
+
return tf.tile(mask, mult)
|
268 |
+
|
269 |
+
|
270 |
+
class ImageCaptioningModel(tf.keras.Model):
|
271 |
+
|
272 |
+
def __init__(self, cnn_model, encoder, decoder, image_aug=None):
|
273 |
+
super().__init__()
|
274 |
+
self.cnn_model = cnn_model
|
275 |
+
self.encoder = encoder
|
276 |
+
self.decoder = decoder
|
277 |
+
self.image_aug = image_aug
|
278 |
+
self.loss_tracker = tf.keras.metrics.Mean(name="loss")
|
279 |
+
self.acc_tracker = tf.keras.metrics.Mean(name="accuracy")
|
280 |
+
|
281 |
+
|
282 |
+
def calculate_loss(self, y_true, y_pred, mask):
|
283 |
+
loss = self.loss(y_true, y_pred)
|
284 |
+
mask = tf.cast(mask, dtype=loss.dtype)
|
285 |
+
loss *= mask
|
286 |
+
return tf.reduce_sum(loss) / tf.reduce_sum(mask)
|
287 |
+
|
288 |
+
|
289 |
+
def calculate_accuracy(self, y_true, y_pred, mask):
|
290 |
+
accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
|
291 |
+
accuracy = tf.math.logical_and(mask, accuracy)
|
292 |
+
accuracy = tf.cast(accuracy, dtype=tf.float32)
|
293 |
+
mask = tf.cast(mask, dtype=tf.float32)
|
294 |
+
return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
|
295 |
+
|
296 |
+
|
297 |
+
def compute_loss_and_acc(self, img_embed, captions, training=True):
|
298 |
+
encoder_output = self.encoder(img_embed, training=True)
|
299 |
+
y_input = captions[:, :-1]
|
300 |
+
y_true = captions[:, 1:]
|
301 |
+
mask = (y_true != 0)
|
302 |
+
y_pred = self.decoder(
|
303 |
+
y_input, encoder_output, training=True, mask=mask
|
304 |
+
)
|
305 |
+
loss = self.calculate_loss(y_true, y_pred, mask)
|
306 |
+
acc = self.calculate_accuracy(y_true, y_pred, mask)
|
307 |
+
return loss, acc
|
308 |
+
|
309 |
+
|
310 |
+
def train_step(self, batch):
|
311 |
+
imgs, captions = batch
|
312 |
+
|
313 |
+
if self.image_aug:
|
314 |
+
imgs = self.image_aug(imgs)
|
315 |
+
|
316 |
+
img_embed = self.cnn_model(imgs)
|
317 |
+
|
318 |
+
with tf.GradientTape() as tape:
|
319 |
+
loss, acc = self.compute_loss_and_acc(
|
320 |
+
img_embed, captions
|
321 |
+
)
|
322 |
+
|
323 |
+
train_vars = (
|
324 |
+
self.encoder.trainable_variables + self.decoder.trainable_variables
|
325 |
+
)
|
326 |
+
grads = tape.gradient(loss, train_vars)
|
327 |
+
self.optimizer.apply_gradients(zip(grads, train_vars))
|
328 |
+
self.loss_tracker.update_state(loss)
|
329 |
+
self.acc_tracker.update_state(acc)
|
330 |
+
|
331 |
+
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
|
332 |
+
|
333 |
+
|
334 |
+
def test_step(self, batch):
|
335 |
+
imgs, captions = batch
|
336 |
+
|
337 |
+
img_embed = self.cnn_model(imgs)
|
338 |
+
|
339 |
+
loss, acc = self.compute_loss_and_acc(
|
340 |
+
img_embed, captions, training=False
|
341 |
+
)
|
342 |
+
|
343 |
+
self.loss_tracker.update_state(loss)
|
344 |
+
self.acc_tracker.update_state(acc)
|
345 |
+
|
346 |
+
return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
|
347 |
+
|
348 |
+
@property
|
349 |
+
def metrics(self):
|
350 |
+
return [self.loss_tracker, self.acc_tracker]
|
351 |
+
|
352 |
+
|
353 |
+
encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
|
354 |
+
decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)
|
355 |
+
|
356 |
+
cnn_model = CNN_Encoder()
|
357 |
+
caption_model = ImageCaptioningModel(
|
358 |
+
cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=image_augmentation,
|
359 |
+
)
|
360 |
+
|
361 |
+
|
362 |
+
cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(
|
363 |
+
from_logits=False, reduction="none"
|
364 |
+
)
|
365 |
+
|
366 |
+
early_stopping = tf.keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)
|
367 |
+
|
368 |
+
caption_model.compile(
|
369 |
+
optimizer=tf.keras.optimizers.Adam(),
|
370 |
+
loss=cross_entropy
|
371 |
+
)
|
372 |
+
|
373 |
+
history = caption_model.fit(
|
374 |
+
train_dataset,
|
375 |
+
epochs=EPOCHS,
|
376 |
+
validation_data=val_dataset,
|
377 |
+
callbacks=[early_stopping]
|
378 |
+
)
|
379 |
+
|
380 |
+
caption_model.save_weights('./image-caption-generator/models/trained_coco_weights.h5')
|
381 |
+
|
382 |
+
|
383 |
+
|