File size: 39,397 Bytes
9b32e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc9607
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
#### https://github.com/Stability-AI/generative-models
from einops import rearrange, repeat
import logging
from typing import Any, Callable, Optional, Iterable, Union

import numpy as np
import torch
import torch.nn as nn
from packaging import version
logpy = logging.getLogger(__name__)

try:
    import xformers
    import xformers.ops

    XFORMERS_IS_AVAILABLE = True
except:
    XFORMERS_IS_AVAILABLE = False
    logpy.warning("no module 'xformers'. Processing without...")

from lvdm.modules.attention_svd import LinearAttention, MemoryEfficientCrossAttention


def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)


def Normalize(in_channels, num_groups=32):
    return torch.nn.GroupNorm(
        num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
    )


class ResnetBlock(nn.Module):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout,
        temb_channels=512,
    ):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        if temb_channels > 0:
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(
                    in_channels, out_channels, kernel_size=3, stride=1, padding=1
                )
            else:
                self.nin_shortcut = torch.nn.Conv2d(
                    in_channels, out_channels, kernel_size=1, stride=1, padding=0
                )

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        if temb is not None:
            h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


class LinAttnBlock(LinearAttention):
    """to match AttnBlock usage"""

    def __init__(self, in_channels):
        super().__init__(dim=in_channels, heads=1, dim_head=in_channels)


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )

    def attention(self, h_: torch.Tensor) -> torch.Tensor:
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        b, c, h, w = q.shape
        q, k, v = map(
            lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v)
        )
        h_ = torch.nn.functional.scaled_dot_product_attention(
            q, k, v
        )  # scale is dim ** -0.5 per default
        # compute attention

        return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)

    def forward(self, x, **kwargs):
        h_ = x
        h_ = self.attention(h_)
        h_ = self.proj_out(h_)
        return x + h_


class MemoryEfficientAttnBlock(nn.Module):
    """
    Uses xformers efficient implementation,
    see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
    Note: this is a single-head self-attention operation
    """

    #
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.attention_op: Optional[Any] = None

    def attention(self, h_: torch.Tensor) -> torch.Tensor:
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        B, C, H, W = q.shape
        q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))

        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(B, t.shape[1], 1, C)
            .permute(0, 2, 1, 3)
            .reshape(B * 1, t.shape[1], C)
            .contiguous(),
            (q, k, v),
        )
        out = xformers.ops.memory_efficient_attention(
            q, k, v, attn_bias=None, op=self.attention_op
        )

        out = (
            out.unsqueeze(0)
            .reshape(B, 1, out.shape[1], C)
            .permute(0, 2, 1, 3)
            .reshape(B, out.shape[1], C)
        )
        return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)

    def forward(self, x, **kwargs):
        h_ = x
        h_ = self.attention(h_)
        h_ = self.proj_out(h_)
        return x + h_


class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
    def forward(self, x, context=None, mask=None, **unused_kwargs):
        b, c, h, w = x.shape
        x = rearrange(x, "b c h w -> b (h w) c")
        out = super().forward(x, context=context, mask=mask)
        out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c)
        return x + out


def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
    assert attn_type in [
        "vanilla",
        "vanilla-xformers",
        "memory-efficient-cross-attn",
        "linear",
        "none",
        "memory-efficient-cross-attn-fusion",
    ], f"attn_type {attn_type} unknown"
    if (
        version.parse(torch.__version__) < version.parse("2.0.0")
        and attn_type != "none"
    ):
        assert XFORMERS_IS_AVAILABLE, (
            f"We do not support vanilla attention in {torch.__version__} anymore, "
            f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'"
        )
        # attn_type = "vanilla-xformers"
    logpy.info(f"making attention of type '{attn_type}' with {in_channels} in_channels")
    if attn_type == "vanilla":
        assert attn_kwargs is None
        return AttnBlock(in_channels)
    elif attn_type == "vanilla-xformers":
        logpy.info(
            f"building MemoryEfficientAttnBlock with {in_channels} in_channels..."
        )
        return MemoryEfficientAttnBlock(in_channels)
    elif attn_type == "memory-efficient-cross-attn":
        attn_kwargs["query_dim"] = in_channels
        return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
    elif attn_type == "memory-efficient-cross-attn-fusion":
        attn_kwargs["query_dim"] = in_channels
        return MemoryEfficientCrossAttentionWrapperFusion(**attn_kwargs)
    elif attn_type == "none":
        return nn.Identity(in_channels)
    else:
        return LinAttnBlock(in_channels)

class MemoryEfficientCrossAttentionWrapperFusion(MemoryEfficientCrossAttention):
    # print('x.shape: ',x.shape, 'context.shape: ',context.shape) ##torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256])
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0, **kwargs):
        super().__init__(query_dim, context_dim, heads, dim_head, dropout, **kwargs)
        self.norm = Normalize(query_dim)
        nn.init.zeros_(self.to_out[0].weight)
        nn.init.zeros_(self.to_out[0].bias)

    def forward(self, x, context=None, mask=None):
        if self.training:
            return checkpoint(self._forward, x, context, mask, use_reentrant=False)
        else:
            return self._forward(x, context, mask)

    def _forward(
        self,
        x,
        context=None,
        mask=None,
    ):
        bt, c, h, w = x.shape
        h_ = self.norm(x)
        h_ = rearrange(h_, "b c h w -> b (h w) c")
        q = self.to_q(h_)


        b, c, l, h, w = context.shape
        context = rearrange(context, "b c l h w -> (b l) (h w) c")
        k = self.to_k(context)
        v = self.to_v(context)
        k = rearrange(k, "(b l) d c -> b l d c", l=l)
        k = torch.cat([k[:, [0] * (bt//b)], k[:, [1]*(bt//b)]], dim=2)
        k = rearrange(k, "b l d c -> (b l) d c")

        v = rearrange(v, "(b l) d c -> b l d c", l=l)
        v = torch.cat([v[:, [0] * (bt//b)], v[:, [1]*(bt//b)]], dim=2)
        v = rearrange(v, "b l d c -> (b l) d c")


        b, _, _ = q.shape  ##actually bt
        q, k, v = map(
            lambda t: t.unsqueeze(3)
            .reshape(b, t.shape[1], self.heads, self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b * self.heads, t.shape[1], self.dim_head)
            .contiguous(),
            (q, k, v),
        )

        # actually compute the attention, what we cannot get enough of
        if version.parse(xformers.__version__) >= version.parse("0.0.21"):
            # NOTE: workaround for
            # https://github.com/facebookresearch/xformers/issues/845
            max_bs = 32768
            N = q.shape[0]
            n_batches = math.ceil(N / max_bs)
            out = list()
            for i_batch in range(n_batches):
                batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs)
                out.append(
                    xformers.ops.memory_efficient_attention(
                        q[batch],
                        k[batch],
                        v[batch],
                        attn_bias=None,
                        op=self.attention_op,
                    )
                )
            out = torch.cat(out, 0)
        else:
            out = xformers.ops.memory_efficient_attention(
                q, k, v, attn_bias=None, op=self.attention_op
            )

        # TODO: Use this directly in the attention operation, as a bias
        if exists(mask):
            raise NotImplementedError
        out = (
            out.unsqueeze(0)
            .reshape(b, self.heads, out.shape[1], self.dim_head)
            .permute(0, 2, 1, 3)
            .reshape(b, out.shape[1], self.heads * self.dim_head)
        )
        out = self.to_out(out)
        out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c)
        return x + out 

class Combiner(nn.Module):
    def __init__(self, ch) -> None:
        super().__init__()
        self.conv = nn.Conv2d(ch,ch,1,padding=0)

        nn.init.zeros_(self.conv.weight)
        nn.init.zeros_(self.conv.bias)

    def forward(self, x, context):
        if self.training:
            return checkpoint(self._forward, x, context, use_reentrant=False)
        else:
            return self._forward(x, context)
    
    def _forward(self, x, context):
        ## x: b c h w, context: b c 2 h w
        b, c, l, h, w = context.shape
        bt, c, h, w = x.shape
        context = rearrange(context, "b c l h w -> (b l) c h w")
        context = self.conv(context)
        context = rearrange(context, "(b l) c h w -> b c l h w", l=l)
        x = rearrange(x, "(b t) c h w -> b c t h w", t=bt//b)
        x[:,:,0] = x[:,:,0] + context[:,:,0]
        x[:,:,-1] = x[:,:,-1] + context[:,:,1]
        x = rearrange(x, "b c t h w -> (b t) c h w")
        return x


class Decoder(nn.Module):
    def __init__(
        self,
        *,
        ch,
        out_ch,
        ch_mult=(1, 2, 4, 8),
        num_res_blocks,
        attn_resolutions,
        dropout=0.0,
        resamp_with_conv=True,
        in_channels,
        resolution,
        z_channels,
        give_pre_end=False,
        tanh_out=False,
        use_linear_attn=False,
        attn_type="vanilla-xformers",
        attn_level=[2,3], 
        **ignorekwargs,
    ):
        super().__init__()
        if use_linear_attn:
            attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end
        self.tanh_out = tanh_out
        self.attn_level = attn_level
        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,) + tuple(ch_mult)
        block_in = ch * ch_mult[self.num_resolutions - 1]
        curr_res = resolution // 2 ** (self.num_resolutions - 1)
        self.z_shape = (1, z_channels, curr_res, curr_res)
        logpy.info(
            "Working with z of shape {} = {} dimensions.".format(
                self.z_shape, np.prod(self.z_shape)
            )
        )

        make_attn_cls = self._make_attn()
        make_resblock_cls = self._make_resblock()
        make_conv_cls = self._make_conv()
        # z to block_in
        self.conv_in = torch.nn.Conv2d(
            z_channels, block_in, kernel_size=3, stride=1, padding=1
        )

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = make_resblock_cls(
            in_channels=block_in,
            out_channels=block_in,
            temb_channels=self.temb_ch,
            dropout=dropout,
        )
        self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type)
        self.mid.block_2 = make_resblock_cls(
            in_channels=block_in,
            out_channels=block_in,
            temb_channels=self.temb_ch,
            dropout=dropout,
        )

        # upsampling
        self.up = nn.ModuleList()
        self.attn_refinement = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                block.append(
                    make_resblock_cls(
                        in_channels=block_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn_cls(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

            if i_level in self.attn_level:
                self.attn_refinement.insert(0, make_attn_cls(block_in, attn_type='memory-efficient-cross-attn-fusion', attn_kwargs={}))
            else:
                self.attn_refinement.insert(0, Combiner(block_in))
        # end
        self.norm_out = Normalize(block_in)
        self.attn_refinement.append(Combiner(block_in))
        self.conv_out = make_conv_cls(
            block_in, out_ch, kernel_size=3, stride=1, padding=1
        )

    def _make_attn(self) -> Callable:
        return make_attn

    def _make_resblock(self) -> Callable:
        return ResnetBlock

    def _make_conv(self) -> Callable:
        return torch.nn.Conv2d

    def get_last_layer(self, **kwargs):
        return self.conv_out.weight

    def forward(self, z, ref_context=None, **kwargs):
        ## ref_context: b c 2 h w, 2 means starting and ending frame
        # assert z.shape[1:] == self.z_shape[1:]
        ref_context = None
        self.last_z_shape = z.shape
        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h, temb, **kwargs)
        h = self.mid.attn_1(h, **kwargs)
        h = self.mid.block_2(h, temb, **kwargs)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](h, temb, **kwargs)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h, **kwargs)
            if ref_context:
                h = self.attn_refinement[i_level](x=h, context=ref_context[i_level])
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
        if ref_context:
            # print(h.shape, ref_context[i_level].shape) #torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256])
            h = self.attn_refinement[-1](x=h, context=ref_context[-1])
        h = self.conv_out(h, **kwargs)
        if self.tanh_out:
            h = torch.tanh(h)
        return h

#####


from abc import abstractmethod
from lvdm.models.utils_diffusion import timestep_embedding

from torch.utils.checkpoint import checkpoint
from lvdm.basics import (
    zero_module,
    conv_nd,
    linear,
    normalization,
)
from lvdm.modules.networks.openaimodel3d import Upsample, Downsample
class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x: torch.Tensor, emb: torch.Tensor):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """

class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.
    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
        self,
        channels: int,
        emb_channels: int,
        dropout: float,
        out_channels: Optional[int] = None,
        use_conv: bool = False,
        use_scale_shift_norm: bool = False,
        dims: int = 2,
        use_checkpoint: bool = False,
        up: bool = False,
        down: bool = False,
        kernel_size: int = 3,
        exchange_temb_dims: bool = False,
        skip_t_emb: bool = False,
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm
        self.exchange_temb_dims = exchange_temb_dims

        if isinstance(kernel_size, Iterable):
            padding = [k // 2 for k in kernel_size]
        else:
            padding = kernel_size // 2

        self.in_layers = nn.Sequential(
            normalization(channels),
            nn.SiLU(),
            conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, False, dims)
            self.x_upd = Upsample(channels, False, dims)
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.skip_t_emb = skip_t_emb
        self.emb_out_channels = (
            2 * self.out_channels if use_scale_shift_norm else self.out_channels
        )
        if self.skip_t_emb:
            # print(f"Skipping timestep embedding in {self.__class__.__name__}")
            assert not self.use_scale_shift_norm
            self.emb_layers = None
            self.exchange_temb_dims = False
        else:
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(
                    emb_channels,
                    self.emb_out_channels,
                ),
            )

        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
                conv_nd(
                    dims,
                    self.out_channels,
                    self.out_channels,
                    kernel_size,
                    padding=padding,
                )
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(
                dims, channels, self.out_channels, kernel_size, padding=padding
            )
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.
        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        if self.use_checkpoint:
            return checkpoint(self._forward, x, emb, use_reentrant=False)
        else:
            return self._forward(x, emb)

    def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)

        if self.skip_t_emb:
            emb_out = torch.zeros_like(h)
        else:
            emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = torch.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            if self.exchange_temb_dims:
                emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h
#####

#####
from lvdm.modules.attention_svd import *
class VideoTransformerBlock(nn.Module):
    ATTENTION_MODES = {
        "softmax": CrossAttention,
        "softmax-xformers": MemoryEfficientCrossAttention,
    }

    def __init__(
        self,
        dim,
        n_heads,
        d_head,
        dropout=0.0,
        context_dim=None,
        gated_ff=True,
        checkpoint=True,
        timesteps=None,
        ff_in=False,
        inner_dim=None,
        attn_mode="softmax",
        disable_self_attn=False,
        disable_temporal_crossattention=False,
        switch_temporal_ca_to_sa=False,
    ):
        super().__init__()

        attn_cls = self.ATTENTION_MODES[attn_mode]

        self.ff_in = ff_in or inner_dim is not None
        if inner_dim is None:
            inner_dim = dim

        assert int(n_heads * d_head) == inner_dim

        self.is_res = inner_dim == dim

        if self.ff_in:
            self.norm_in = nn.LayerNorm(dim)
            self.ff_in = FeedForward(
                dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff
            )

        self.timesteps = timesteps
        self.disable_self_attn = disable_self_attn
        if self.disable_self_attn:
            self.attn1 = attn_cls(
                query_dim=inner_dim,
                heads=n_heads,
                dim_head=d_head,
                context_dim=context_dim,
                dropout=dropout,
            )  # is a cross-attention
        else:
            self.attn1 = attn_cls(
                query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
            )  # is a self-attention

        self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff)

        if disable_temporal_crossattention:
            if switch_temporal_ca_to_sa:
                raise ValueError
            else:
                self.attn2 = None
        else:
            self.norm2 = nn.LayerNorm(inner_dim)
            if switch_temporal_ca_to_sa:
                self.attn2 = attn_cls(
                    query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
                )  # is a self-attention
            else:
                self.attn2 = attn_cls(
                    query_dim=inner_dim,
                    context_dim=context_dim,
                    heads=n_heads,
                    dim_head=d_head,
                    dropout=dropout,
                )  # is self-attn if context is none

        self.norm1 = nn.LayerNorm(inner_dim)
        self.norm3 = nn.LayerNorm(inner_dim)
        self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa

        self.checkpoint = checkpoint
        if self.checkpoint:
            print(f"====>{self.__class__.__name__} is using checkpointing")
        else:
            print(f"====>{self.__class__.__name__} is NOT using checkpointing")

    def forward(
        self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None
    ) -> torch.Tensor:
        if self.checkpoint:
            return checkpoint(self._forward, x, context, timesteps, use_reentrant=False)
        else:
            return self._forward(x, context, timesteps=timesteps)

    def _forward(self, x, context=None, timesteps=None):
        assert self.timesteps or timesteps
        assert not (self.timesteps and timesteps) or self.timesteps == timesteps
        timesteps = self.timesteps or timesteps
        B, S, C = x.shape
        x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps)

        if self.ff_in:
            x_skip = x
            x = self.ff_in(self.norm_in(x))
            if self.is_res:
                x += x_skip

        if self.disable_self_attn:
            x = self.attn1(self.norm1(x), context=context) + x
        else:
            x = self.attn1(self.norm1(x)) + x

        if self.attn2 is not None:
            if self.switch_temporal_ca_to_sa:
                x = self.attn2(self.norm2(x)) + x
            else:
                x = self.attn2(self.norm2(x), context=context) + x
        x_skip = x
        x = self.ff(self.norm3(x))
        if self.is_res:
            x += x_skip

        x = rearrange(
            x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
        )
        return x

    def get_last_layer(self):
        return self.ff.net[-1].weight

#####

#####
import functools
def partialclass(cls, *args, **kwargs):
    class NewCls(cls):
        __init__ = functools.partialmethod(cls.__init__, *args, **kwargs)

    return NewCls
######

class VideoResBlock(ResnetBlock):
    def __init__(
        self,
        out_channels,
        *args,
        dropout=0.0,
        video_kernel_size=3,
        alpha=0.0,
        merge_strategy="learned",
        **kwargs,
    ):
        super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
        if video_kernel_size is None:
            video_kernel_size = [3, 1, 1]
        self.time_stack = ResBlock(
            channels=out_channels,
            emb_channels=0,
            dropout=dropout,
            dims=3,
            use_scale_shift_norm=False,
            use_conv=False,
            up=False,
            down=False,
            kernel_size=video_kernel_size,
            use_checkpoint=True,
            skip_t_emb=True,
        )

        self.merge_strategy = merge_strategy
        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned":
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def get_alpha(self, bs):
        if self.merge_strategy == "fixed":
            return self.mix_factor
        elif self.merge_strategy == "learned":
            return torch.sigmoid(self.mix_factor)
        else:
            raise NotImplementedError()

    def forward(self, x, temb, skip_video=False, timesteps=None):
        if timesteps is None:
            timesteps = self.timesteps

        b, c, h, w = x.shape

        x = super().forward(x, temb)

        if not skip_video:
            x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)

            x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)

            x = self.time_stack(x, temb)

            alpha = self.get_alpha(bs=b // timesteps)
            x = alpha * x + (1.0 - alpha) * x_mix

            x = rearrange(x, "b c t h w -> (b t) c h w")
        return x


class AE3DConv(torch.nn.Conv2d):
    def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
        super().__init__(in_channels, out_channels, *args, **kwargs)
        if isinstance(video_kernel_size, Iterable):
            padding = [int(k // 2) for k in video_kernel_size]
        else:
            padding = int(video_kernel_size // 2)

        self.time_mix_conv = torch.nn.Conv3d(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=video_kernel_size,
            padding=padding,
        )

    def forward(self, input, timesteps, skip_video=False):
        x = super().forward(input)
        if skip_video:
            return x
        x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
        x = self.time_mix_conv(x)
        return rearrange(x, "b c t h w -> (b t) c h w")


class VideoBlock(AttnBlock):
    def __init__(
        self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
    ):
        super().__init__(in_channels)
        # no context, single headed, as in base class
        self.time_mix_block = VideoTransformerBlock(
            dim=in_channels,
            n_heads=1,
            d_head=in_channels,
            checkpoint=True,
            ff_in=True,
            attn_mode="softmax",
        )

        time_embed_dim = self.in_channels * 4
        self.video_time_embed = torch.nn.Sequential(
            torch.nn.Linear(self.in_channels, time_embed_dim),
            torch.nn.SiLU(),
            torch.nn.Linear(time_embed_dim, self.in_channels),
        )

        self.merge_strategy = merge_strategy
        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned":
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def forward(self, x, timesteps, skip_video=False):
        if skip_video:
            return super().forward(x)

        x_in = x
        x = self.attention(x)
        h, w = x.shape[2:]
        x = rearrange(x, "b c h w -> b (h w) c")

        x_mix = x
        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
        emb = self.video_time_embed(t_emb)  # b, n_channels
        emb = emb[:, None, :]
        x_mix = x_mix + emb

        alpha = self.get_alpha()
        x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
        x = alpha * x + (1.0 - alpha) * x_mix  # alpha merge

        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        x = self.proj_out(x)

        return x_in + x

    def get_alpha(
        self,
    ):
        if self.merge_strategy == "fixed":
            return self.mix_factor
        elif self.merge_strategy == "learned":
            return torch.sigmoid(self.mix_factor)
        else:
            raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")


class MemoryEfficientVideoBlock(MemoryEfficientAttnBlock):
    def __init__(
        self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
    ):
        super().__init__(in_channels)
        # no context, single headed, as in base class
        self.time_mix_block = VideoTransformerBlock(
            dim=in_channels,
            n_heads=1,
            d_head=in_channels,
            checkpoint=True,
            ff_in=True,
            attn_mode="softmax-xformers",
        )

        time_embed_dim = self.in_channels * 4
        self.video_time_embed = torch.nn.Sequential(
            torch.nn.Linear(self.in_channels, time_embed_dim),
            torch.nn.SiLU(),
            torch.nn.Linear(time_embed_dim, self.in_channels),
        )

        self.merge_strategy = merge_strategy
        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned":
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def forward(self, x, timesteps, skip_time_block=False):
        if skip_time_block:
            return super().forward(x)

        x_in = x
        x = self.attention(x)
        h, w = x.shape[2:]
        x = rearrange(x, "b c h w -> b (h w) c")

        x_mix = x
        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
        emb = self.video_time_embed(t_emb)  # b, n_channels
        emb = emb[:, None, :]
        x_mix = x_mix + emb

        alpha = self.get_alpha()
        x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
        x = alpha * x + (1.0 - alpha) * x_mix  # alpha merge

        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        x = self.proj_out(x)

        return x_in + x

    def get_alpha(
        self,
    ):
        if self.merge_strategy == "fixed":
            return self.mix_factor
        elif self.merge_strategy == "learned":
            return torch.sigmoid(self.mix_factor)
        else:
            raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")


def make_time_attn(
    in_channels,
    attn_type="vanilla",
    attn_kwargs=None,
    alpha: float = 0,
    merge_strategy: str = "learned",
):
    assert attn_type in [
        "vanilla",
        "vanilla-xformers",
    ], f"attn_type {attn_type} not supported for spatio-temporal attention"
    print(
        f"making spatial and temporal attention of type '{attn_type}' with {in_channels} in_channels"
    )
    if not XFORMERS_IS_AVAILABLE and attn_type == "vanilla-xformers":
        print(
            f"Attention mode '{attn_type}' is not available. Falling back to vanilla attention. "
            f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
        )
        attn_type = "vanilla"

    if attn_type == "vanilla":
        assert attn_kwargs is None
        return partialclass(
            VideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
        )
    elif attn_type == "vanilla-xformers":
        print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
        return partialclass(
            MemoryEfficientVideoBlock,
            in_channels,
            alpha=alpha,
            merge_strategy=merge_strategy,
        )
    else:
        return NotImplementedError()


class Conv2DWrapper(torch.nn.Conv2d):
    def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
        return super().forward(input)


class VideoDecoder(Decoder):
    available_time_modes = ["all", "conv-only", "attn-only"]

    def __init__(
        self,
        *args,
        video_kernel_size: Union[int, list] = [3,1,1],
        alpha: float = 0.0,
        merge_strategy: str = "learned",
        time_mode: str = "conv-only",
        **kwargs,
    ):
        self.video_kernel_size = video_kernel_size
        self.alpha = alpha
        self.merge_strategy = merge_strategy
        self.time_mode = time_mode
        assert (
            self.time_mode in self.available_time_modes
        ), f"time_mode parameter has to be in {self.available_time_modes}"
        super().__init__(*args, **kwargs)

    def get_last_layer(self, skip_time_mix=False, **kwargs):
        if self.time_mode == "attn-only":
            raise NotImplementedError("TODO")
        else:
            return (
                self.conv_out.time_mix_conv.weight
                if not skip_time_mix
                else self.conv_out.weight
            )

    def _make_attn(self) -> Callable:
        if self.time_mode not in ["conv-only", "only-last-conv"]:
            return partialclass(
                make_time_attn,
                alpha=self.alpha,
                merge_strategy=self.merge_strategy,
            )
        else:
            return super()._make_attn()

    def _make_conv(self) -> Callable:
        if self.time_mode != "attn-only":
            return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
        else:
            return Conv2DWrapper

    def _make_resblock(self) -> Callable:
        if self.time_mode not in ["attn-only", "only-last-conv"]:
            return partialclass(
                VideoResBlock,
                video_kernel_size=self.video_kernel_size,
                alpha=self.alpha,
                merge_strategy=self.merge_strategy,
            )
        else:
            return super()._make_resblock()