Upload 166 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- LICENSE +201 -0
- README.md +41 -12
- assets/00.gif +0 -0
- assets/01.gif +0 -0
- assets/02.gif +0 -0
- assets/03.gif +0 -0
- assets/04.gif +0 -0
- assets/05.gif +0 -0
- assets/06.gif +0 -0
- assets/07.gif +0 -0
- assets/08.gif +0 -0
- assets/09.gif +0 -0
- assets/10.gif +0 -0
- assets/11.gif +0 -0
- assets/12.gif +0 -0
- assets/13.gif +3 -0
- assets/72105_388.mp4_00-00.png +0 -0
- assets/72105_388.mp4_00-01.png +0 -0
- assets/72109_125.mp4_00-00.png +0 -0
- assets/72109_125.mp4_00-01.png +0 -0
- assets/72110_255.mp4_00-00.png +0 -0
- assets/72110_255.mp4_00-01.png +0 -0
- assets/74302_1349_frame1.png +0 -0
- assets/74302_1349_frame3.png +0 -0
- assets/Japan_v2_1_070321_s3_frame1.png +0 -0
- assets/Japan_v2_1_070321_s3_frame3.png +0 -0
- assets/Japan_v2_2_062266_s2_frame1.png +0 -0
- assets/Japan_v2_2_062266_s2_frame3.png +0 -0
- assets/frame0001_05.png +0 -0
- assets/frame0001_09.png +0 -0
- assets/frame0001_10.png +0 -0
- assets/frame0001_11.png +0 -0
- assets/frame0016_10.png +0 -0
- assets/frame0016_11.png +0 -0
- assets/sketch_sample/frame_1.png +0 -0
- assets/sketch_sample/frame_2.png +0 -0
- assets/sketch_sample/sample.mov +0 -0
- checkpoints/tooncrafter_1024_interp_sketch/.cache/huggingface/.gitignore +1 -0
- checkpoints/tooncrafter_1024_interp_sketch/.cache/huggingface/download/tc_sketch.pt.lock +0 -0
- checkpoints/tooncrafter_1024_interp_sketch/.cache/huggingface/download/tc_sketch.pt.metadata +3 -0
- cldm/__pycache__/cldm.cpython-38.pyc +0 -0
- cldm/__pycache__/model.cpython-38.pyc +0 -0
- cldm/cldm.py +478 -0
- cldm/ddim_hacked.py +317 -0
- cldm/hack.py +111 -0
- cldm/logger.py +76 -0
- cldm/model.py +28 -0
- configs/cldm_v21.yaml +17 -0
- configs/inference_1024_v1.0.yaml +103 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/13.gif filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright Tencent
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,12 +1,41 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## ___***ToonCrafter_with_SketchGuidance***___
|
2 |
+
This repository is an implementation that recreates the SketchGuidance feature of "ToonCrafter".
|
3 |
+
|
4 |
+
- https://github.com/ToonCrafter/ToonCrafter
|
5 |
+
- https://arxiv.org/pdf/2405.17933
|
6 |
+
|
7 |
+
https://github.com/user-attachments/assets/f72f287d-f848-4982-8f91-43c49d037007
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
## 🧰 Models
|
12 |
+
|
13 |
+
|Model|Resolution|GPU Mem. & Inference Time (A100, ddim 50steps)|Checkpoint|
|
14 |
+
|:---------|:---------|:--------|:--------|
|
15 |
+
|ToonCrafter_512|320x512| TBD (`perframe_ae=True`)|[Hugging Face](https://huggingface.co/Doubiiu/ToonCrafter/blob/main/model.ckpt)|
|
16 |
+
|SketchEncoder|TBD| TBD |[Hugging Face](https://huggingface.co/Doubiiu/ToonCrafter/blob/main/sketch_encoder.ckpt)|
|
17 |
+
|
18 |
+
|
19 |
+
Currently, ToonCrafter can support generating videos of up to 16 frames with a resolution of 512x320. The inference time can be reduced by using fewer DDIM steps.
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
## ⚙️ Setup
|
24 |
+
|
25 |
+
### Install Environment via Anaconda (Recommended)
|
26 |
+
```bash
|
27 |
+
conda create -n tooncrafter python=3.8.5
|
28 |
+
conda activate tooncrafter
|
29 |
+
pip install -r requirements.txt
|
30 |
+
```
|
31 |
+
|
32 |
+
|
33 |
+
## 💫 Inference
|
34 |
+
|
35 |
+
### 1. Local Gradio demo
|
36 |
+
1. Download pretrained ToonCrafter_512 and put the model.ckpt in checkpoints/tooncrafter_512_interp_v1/model.ckpt.
|
37 |
+
2. Download pretrained SketchEncoder and put the model.ckpt in control_models/sketch_encoder.ckpt.
|
38 |
+
|
39 |
+
```bash
|
40 |
+
python gradio_app.py
|
41 |
+
```
|
assets/00.gif
ADDED
assets/01.gif
ADDED
assets/02.gif
ADDED
assets/03.gif
ADDED
assets/04.gif
ADDED
assets/05.gif
ADDED
assets/06.gif
ADDED
assets/07.gif
ADDED
assets/08.gif
ADDED
assets/09.gif
ADDED
assets/10.gif
ADDED
assets/11.gif
ADDED
assets/12.gif
ADDED
assets/13.gif
ADDED
Git LFS Details
|
assets/72105_388.mp4_00-00.png
ADDED
assets/72105_388.mp4_00-01.png
ADDED
assets/72109_125.mp4_00-00.png
ADDED
assets/72109_125.mp4_00-01.png
ADDED
assets/72110_255.mp4_00-00.png
ADDED
assets/72110_255.mp4_00-01.png
ADDED
assets/74302_1349_frame1.png
ADDED
assets/74302_1349_frame3.png
ADDED
assets/Japan_v2_1_070321_s3_frame1.png
ADDED
assets/Japan_v2_1_070321_s3_frame3.png
ADDED
assets/Japan_v2_2_062266_s2_frame1.png
ADDED
assets/Japan_v2_2_062266_s2_frame3.png
ADDED
assets/frame0001_05.png
ADDED
assets/frame0001_09.png
ADDED
assets/frame0001_10.png
ADDED
assets/frame0001_11.png
ADDED
assets/frame0016_10.png
ADDED
assets/frame0016_11.png
ADDED
assets/sketch_sample/frame_1.png
ADDED
assets/sketch_sample/frame_2.png
ADDED
assets/sketch_sample/sample.mov
ADDED
Binary file (228 kB). View file
|
|
checkpoints/tooncrafter_1024_interp_sketch/.cache/huggingface/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*
|
checkpoints/tooncrafter_1024_interp_sketch/.cache/huggingface/download/tc_sketch.pt.lock
ADDED
File without changes
|
checkpoints/tooncrafter_1024_interp_sketch/.cache/huggingface/download/tc_sketch.pt.metadata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ff369905091bfeb92381885efbfee9f935b4ebc4
|
2 |
+
0f33c61f5e5046233e943d6e54a48b69512492ffe54b33b482dd48b8911a850b
|
3 |
+
1734665884.5047696
|
cldm/__pycache__/cldm.cpython-38.pyc
ADDED
Binary file (12.2 kB). View file
|
|
cldm/__pycache__/model.cpython-38.pyc
ADDED
Binary file (1.11 kB). View file
|
|
cldm/cldm.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import einops
|
2 |
+
import torch
|
3 |
+
import torch as th
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from ldm.modules.diffusionmodules.util import (
|
7 |
+
conv_nd,
|
8 |
+
linear,
|
9 |
+
zero_module,
|
10 |
+
timestep_embedding,
|
11 |
+
)
|
12 |
+
|
13 |
+
from einops import rearrange, repeat
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
from ldm.modules.attention import SpatialTransformer
|
16 |
+
from ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
|
17 |
+
from lvdm.modules.networks.openaimodel3d import UNetModel
|
18 |
+
from ldm.models.diffusion.ddpm import LatentDiffusion
|
19 |
+
from ldm.util import log_txt_as_img, exists, instantiate_from_config
|
20 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
21 |
+
|
22 |
+
|
23 |
+
class ControlledUnetModel(UNetModel):
|
24 |
+
def forward(self, x, timesteps, context=None, features_adapter=None, fs=None, control = None, **kwargs):
|
25 |
+
b,_,t,_,_ = x.shape
|
26 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).type(x.dtype)
|
27 |
+
emb = self.time_embed(t_emb)
|
28 |
+
## repeat t times for context [(b t) 77 768] & time embedding
|
29 |
+
## check if we use per-frame image conditioning
|
30 |
+
_, l_context, _ = context.shape
|
31 |
+
if l_context == 77 + t*16: ## !!! HARD CODE here
|
32 |
+
context_text, context_img = context[:,:77,:], context[:,77:,:]
|
33 |
+
context_text = context_text.repeat_interleave(repeats=t, dim=0)
|
34 |
+
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
|
35 |
+
context = torch.cat([context_text, context_img], dim=1)
|
36 |
+
else:
|
37 |
+
context = context.repeat_interleave(repeats=t, dim=0)
|
38 |
+
emb = emb.repeat_interleave(repeats=t, dim=0)
|
39 |
+
|
40 |
+
## always in shape (b t) c h w, except for temporal layer
|
41 |
+
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
42 |
+
|
43 |
+
## combine emb
|
44 |
+
if self.fs_condition:
|
45 |
+
if fs is None:
|
46 |
+
fs = torch.tensor(
|
47 |
+
[self.default_fs] * b, dtype=torch.long, device=x.device)
|
48 |
+
fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False).type(x.dtype)
|
49 |
+
|
50 |
+
fs_embed = self.fps_embedding(fs_emb)
|
51 |
+
fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0)
|
52 |
+
emb = emb + fs_embed
|
53 |
+
|
54 |
+
h = x.type(self.dtype)
|
55 |
+
adapter_idx = 0
|
56 |
+
hs = []
|
57 |
+
with torch.no_grad():
|
58 |
+
for id, module in enumerate(self.input_blocks):
|
59 |
+
h = module(h, emb, context=context, batch_size=b)
|
60 |
+
if id ==0 and self.addition_attention:
|
61 |
+
h = self.init_attn(h, emb, context=context, batch_size=b)
|
62 |
+
## plug-in adapter features
|
63 |
+
if ((id+1)%3 == 0) and features_adapter is not None:
|
64 |
+
h = h + features_adapter[adapter_idx]
|
65 |
+
adapter_idx += 1
|
66 |
+
hs.append(h)
|
67 |
+
if features_adapter is not None:
|
68 |
+
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
|
69 |
+
|
70 |
+
h = self.middle_block(h, emb, context=context, batch_size=b)
|
71 |
+
|
72 |
+
if control is not None:
|
73 |
+
h += control.pop()
|
74 |
+
|
75 |
+
for module in self.output_blocks:
|
76 |
+
if control is None:
|
77 |
+
h = torch.cat([h, hs.pop()], dim=1)
|
78 |
+
else:
|
79 |
+
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
|
80 |
+
h = module(h, emb, context=context, batch_size=b)
|
81 |
+
|
82 |
+
h = h.type(x.dtype)
|
83 |
+
y = self.out(h)
|
84 |
+
|
85 |
+
# reshape back to (b c t h w)
|
86 |
+
y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
|
87 |
+
return y
|
88 |
+
|
89 |
+
|
90 |
+
class ControlNet(nn.Module):
|
91 |
+
def __init__(
|
92 |
+
self,
|
93 |
+
image_size,
|
94 |
+
in_channels,
|
95 |
+
model_channels,
|
96 |
+
hint_channels,
|
97 |
+
num_res_blocks,
|
98 |
+
attention_resolutions,
|
99 |
+
dropout=0,
|
100 |
+
channel_mult=(1, 2, 4, 8),
|
101 |
+
conv_resample=True,
|
102 |
+
dims=2,
|
103 |
+
use_checkpoint=False,
|
104 |
+
use_fp16=False,
|
105 |
+
num_heads=-1,
|
106 |
+
num_head_channels=-1,
|
107 |
+
num_heads_upsample=-1,
|
108 |
+
use_scale_shift_norm=False,
|
109 |
+
resblock_updown=False,
|
110 |
+
use_new_attention_order=False,
|
111 |
+
use_spatial_transformer=False, # custom transformer support
|
112 |
+
transformer_depth=1, # custom transformer support
|
113 |
+
context_dim=None, # custom transformer support
|
114 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
115 |
+
legacy=True,
|
116 |
+
disable_self_attentions=None,
|
117 |
+
num_attention_blocks=None,
|
118 |
+
disable_middle_self_attn=False,
|
119 |
+
use_linear_in_transformer=False,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
if use_spatial_transformer:
|
123 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
124 |
+
|
125 |
+
if context_dim is not None:
|
126 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
127 |
+
from omegaconf.listconfig import ListConfig
|
128 |
+
if type(context_dim) == ListConfig:
|
129 |
+
context_dim = list(context_dim)
|
130 |
+
|
131 |
+
if num_heads_upsample == -1:
|
132 |
+
num_heads_upsample = num_heads
|
133 |
+
|
134 |
+
if num_heads == -1:
|
135 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
136 |
+
|
137 |
+
if num_head_channels == -1:
|
138 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
139 |
+
|
140 |
+
self.dims = dims
|
141 |
+
self.image_size = image_size
|
142 |
+
self.in_channels = in_channels
|
143 |
+
self.model_channels = model_channels
|
144 |
+
if isinstance(num_res_blocks, int):
|
145 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
146 |
+
else:
|
147 |
+
if len(num_res_blocks) != len(channel_mult):
|
148 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
149 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
150 |
+
self.num_res_blocks = num_res_blocks
|
151 |
+
if disable_self_attentions is not None:
|
152 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
153 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
154 |
+
if num_attention_blocks is not None:
|
155 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
156 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
157 |
+
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
158 |
+
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
159 |
+
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
160 |
+
f"attention will still not be set.")
|
161 |
+
|
162 |
+
self.attention_resolutions = attention_resolutions
|
163 |
+
self.dropout = dropout
|
164 |
+
self.channel_mult = channel_mult
|
165 |
+
self.conv_resample = conv_resample
|
166 |
+
self.use_checkpoint = use_checkpoint
|
167 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
168 |
+
self.num_heads = num_heads
|
169 |
+
self.num_head_channels = num_head_channels
|
170 |
+
self.num_heads_upsample = num_heads_upsample
|
171 |
+
self.predict_codebook_ids = n_embed is not None
|
172 |
+
|
173 |
+
time_embed_dim = model_channels * 4
|
174 |
+
self.time_embed = nn.Sequential(
|
175 |
+
linear(model_channels, time_embed_dim),
|
176 |
+
nn.SiLU(),
|
177 |
+
linear(time_embed_dim, time_embed_dim),
|
178 |
+
)
|
179 |
+
|
180 |
+
self.input_blocks = nn.ModuleList(
|
181 |
+
[
|
182 |
+
TimestepEmbedSequential(
|
183 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
184 |
+
)
|
185 |
+
]
|
186 |
+
)
|
187 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
188 |
+
|
189 |
+
self.input_hint_block = TimestepEmbedSequential(
|
190 |
+
conv_nd(dims, hint_channels, 16, 3, padding=1),
|
191 |
+
nn.SiLU(),
|
192 |
+
conv_nd(dims, 16, 16, 3, padding=1),
|
193 |
+
nn.SiLU(),
|
194 |
+
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
195 |
+
nn.SiLU(),
|
196 |
+
conv_nd(dims, 32, 32, 3, padding=1),
|
197 |
+
nn.SiLU(),
|
198 |
+
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
199 |
+
nn.SiLU(),
|
200 |
+
conv_nd(dims, 96, 96, 3, padding=1),
|
201 |
+
nn.SiLU(),
|
202 |
+
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
203 |
+
nn.SiLU(),
|
204 |
+
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
|
205 |
+
)
|
206 |
+
|
207 |
+
self._feature_size = model_channels
|
208 |
+
input_block_chans = [model_channels]
|
209 |
+
ch = model_channels
|
210 |
+
ds = 1
|
211 |
+
for level, mult in enumerate(channel_mult):
|
212 |
+
for nr in range(self.num_res_blocks[level]):
|
213 |
+
layers = [
|
214 |
+
ResBlock(
|
215 |
+
ch,
|
216 |
+
time_embed_dim,
|
217 |
+
dropout,
|
218 |
+
out_channels=mult * model_channels,
|
219 |
+
dims=dims,
|
220 |
+
use_checkpoint=use_checkpoint,
|
221 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
222 |
+
)
|
223 |
+
]
|
224 |
+
ch = mult * model_channels
|
225 |
+
if ds in attention_resolutions:
|
226 |
+
if num_head_channels == -1:
|
227 |
+
dim_head = ch // num_heads
|
228 |
+
else:
|
229 |
+
num_heads = ch // num_head_channels
|
230 |
+
dim_head = num_head_channels
|
231 |
+
if legacy:
|
232 |
+
# num_heads = 1
|
233 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
234 |
+
if exists(disable_self_attentions):
|
235 |
+
disabled_sa = disable_self_attentions[level]
|
236 |
+
else:
|
237 |
+
disabled_sa = False
|
238 |
+
|
239 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
240 |
+
layers.append(
|
241 |
+
AttentionBlock(
|
242 |
+
ch,
|
243 |
+
use_checkpoint=use_checkpoint,
|
244 |
+
num_heads=num_heads,
|
245 |
+
num_head_channels=dim_head,
|
246 |
+
use_new_attention_order=use_new_attention_order,
|
247 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
248 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
249 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
250 |
+
use_checkpoint=use_checkpoint
|
251 |
+
)
|
252 |
+
)
|
253 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
254 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
255 |
+
self._feature_size += ch
|
256 |
+
input_block_chans.append(ch)
|
257 |
+
if level != len(channel_mult) - 1:
|
258 |
+
out_ch = ch
|
259 |
+
self.input_blocks.append(
|
260 |
+
TimestepEmbedSequential(
|
261 |
+
ResBlock(
|
262 |
+
ch,
|
263 |
+
time_embed_dim,
|
264 |
+
dropout,
|
265 |
+
out_channels=out_ch,
|
266 |
+
dims=dims,
|
267 |
+
use_checkpoint=use_checkpoint,
|
268 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
269 |
+
down=True,
|
270 |
+
)
|
271 |
+
if resblock_updown
|
272 |
+
else Downsample(
|
273 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
274 |
+
)
|
275 |
+
)
|
276 |
+
)
|
277 |
+
ch = out_ch
|
278 |
+
input_block_chans.append(ch)
|
279 |
+
self.zero_convs.append(self.make_zero_conv(ch))
|
280 |
+
ds *= 2
|
281 |
+
self._feature_size += ch
|
282 |
+
|
283 |
+
if num_head_channels == -1:
|
284 |
+
dim_head = ch // num_heads
|
285 |
+
else:
|
286 |
+
num_heads = ch // num_head_channels
|
287 |
+
dim_head = num_head_channels
|
288 |
+
if legacy:
|
289 |
+
# num_heads = 1
|
290 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
291 |
+
self.middle_block = TimestepEmbedSequential(
|
292 |
+
ResBlock(
|
293 |
+
ch,
|
294 |
+
time_embed_dim,
|
295 |
+
dropout,
|
296 |
+
dims=dims,
|
297 |
+
use_checkpoint=use_checkpoint,
|
298 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
299 |
+
),
|
300 |
+
AttentionBlock(
|
301 |
+
ch,
|
302 |
+
use_checkpoint=use_checkpoint,
|
303 |
+
num_heads=num_heads,
|
304 |
+
num_head_channels=dim_head,
|
305 |
+
use_new_attention_order=use_new_attention_order,
|
306 |
+
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
307 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
308 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
309 |
+
use_checkpoint=use_checkpoint
|
310 |
+
),
|
311 |
+
ResBlock(
|
312 |
+
ch,
|
313 |
+
time_embed_dim,
|
314 |
+
dropout,
|
315 |
+
dims=dims,
|
316 |
+
use_checkpoint=use_checkpoint,
|
317 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
318 |
+
),
|
319 |
+
)
|
320 |
+
self.middle_block_out = self.make_zero_conv(ch)
|
321 |
+
self._feature_size += ch
|
322 |
+
|
323 |
+
def make_zero_conv(self, channels):
|
324 |
+
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
325 |
+
|
326 |
+
def forward(self, x, hint, timesteps, context, **kwargs):
|
327 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
328 |
+
emb = self.time_embed(t_emb)
|
329 |
+
|
330 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
331 |
+
|
332 |
+
outs = []
|
333 |
+
|
334 |
+
h = x.type(self.dtype)
|
335 |
+
|
336 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
337 |
+
if guided_hint is not None:
|
338 |
+
h = module(h, emb, context)
|
339 |
+
h += guided_hint
|
340 |
+
guided_hint = None
|
341 |
+
else:
|
342 |
+
h = module(h, emb, context)
|
343 |
+
outs.append(zero_conv(h, emb, context, True))
|
344 |
+
|
345 |
+
h = self.middle_block(h, emb, context)
|
346 |
+
outs.append(self.middle_block_out(h, emb, context))
|
347 |
+
|
348 |
+
return outs
|
349 |
+
|
350 |
+
|
351 |
+
class ControlLDM(LatentDiffusion):
|
352 |
+
|
353 |
+
def __init__(self, control_stage_config, control_key, only_mid_control, *args, **kwargs):
|
354 |
+
super().__init__(*args, **kwargs)
|
355 |
+
self.control_model = instantiate_from_config(control_stage_config)
|
356 |
+
self.control_key = control_key
|
357 |
+
self.only_mid_control = only_mid_control
|
358 |
+
self.control_scales = [1.0] * 13
|
359 |
+
|
360 |
+
@torch.no_grad()
|
361 |
+
def get_input(self, batch, k, bs=None, *args, **kwargs):
|
362 |
+
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs)
|
363 |
+
control = batch[self.control_key]
|
364 |
+
if bs is not None:
|
365 |
+
control = control[:bs]
|
366 |
+
control = control.to(self.device)
|
367 |
+
control = einops.rearrange(control, 'b h w c -> b c h w')
|
368 |
+
control = control.to(memory_format=torch.contiguous_format).float()
|
369 |
+
return x, dict(c_crossattn=[c], c_concat=[control])
|
370 |
+
|
371 |
+
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
|
372 |
+
assert isinstance(cond, dict)
|
373 |
+
diffusion_model = self.model.diffusion_model
|
374 |
+
|
375 |
+
cond_txt = torch.cat(cond['c_crossattn'], 1)
|
376 |
+
|
377 |
+
if cond['c_concat'] is None:
|
378 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control)
|
379 |
+
else:
|
380 |
+
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
|
381 |
+
control = [c * scale for c, scale in zip(control, self.control_scales)]
|
382 |
+
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control)
|
383 |
+
|
384 |
+
return eps
|
385 |
+
|
386 |
+
@torch.no_grad()
|
387 |
+
def get_unconditional_conditioning(self, N):
|
388 |
+
return self.get_learned_conditioning([""] * N)
|
389 |
+
|
390 |
+
@torch.no_grad()
|
391 |
+
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
|
392 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
393 |
+
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
|
394 |
+
use_ema_scope=True,
|
395 |
+
**kwargs):
|
396 |
+
use_ddim = ddim_steps is not None
|
397 |
+
|
398 |
+
log = dict()
|
399 |
+
z, c = self.get_input(batch, self.first_stage_key, bs=N)
|
400 |
+
c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N]
|
401 |
+
N = min(z.shape[0], N)
|
402 |
+
n_row = min(z.shape[0], n_row)
|
403 |
+
log["reconstruction"] = self.decode_first_stage(z)
|
404 |
+
log["control"] = c_cat * 2.0 - 1.0
|
405 |
+
log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16)
|
406 |
+
|
407 |
+
if plot_diffusion_rows:
|
408 |
+
# get diffusion row
|
409 |
+
diffusion_row = list()
|
410 |
+
z_start = z[:n_row]
|
411 |
+
for t in range(self.num_timesteps):
|
412 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
413 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
414 |
+
t = t.to(self.device).long()
|
415 |
+
noise = torch.randn_like(z_start)
|
416 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
417 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
418 |
+
|
419 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
420 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
421 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
422 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
423 |
+
log["diffusion_row"] = diffusion_grid
|
424 |
+
|
425 |
+
if sample:
|
426 |
+
# get denoise row
|
427 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
428 |
+
batch_size=N, ddim=use_ddim,
|
429 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
430 |
+
x_samples = self.decode_first_stage(samples)
|
431 |
+
log["samples"] = x_samples
|
432 |
+
if plot_denoise_rows:
|
433 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
434 |
+
log["denoise_row"] = denoise_grid
|
435 |
+
|
436 |
+
if unconditional_guidance_scale > 1.0:
|
437 |
+
uc_cross = self.get_unconditional_conditioning(N)
|
438 |
+
uc_cat = c_cat # torch.zeros_like(c_cat)
|
439 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
440 |
+
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
441 |
+
batch_size=N, ddim=use_ddim,
|
442 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
443 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
444 |
+
unconditional_conditioning=uc_full,
|
445 |
+
)
|
446 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
447 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
448 |
+
|
449 |
+
return log
|
450 |
+
|
451 |
+
@torch.no_grad()
|
452 |
+
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
453 |
+
ddim_sampler = DDIMSampler(self)
|
454 |
+
b, c, h, w = cond["c_concat"][0].shape
|
455 |
+
shape = (self.channels, h // 8, w // 8)
|
456 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs)
|
457 |
+
return samples, intermediates
|
458 |
+
|
459 |
+
def configure_optimizers(self):
|
460 |
+
lr = self.learning_rate
|
461 |
+
params = list(self.control_model.parameters())
|
462 |
+
if not self.sd_locked:
|
463 |
+
params += list(self.model.diffusion_model.output_blocks.parameters())
|
464 |
+
params += list(self.model.diffusion_model.out.parameters())
|
465 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
466 |
+
return opt
|
467 |
+
|
468 |
+
def low_vram_shift(self, is_diffusing):
|
469 |
+
if is_diffusing:
|
470 |
+
self.model = self.model.cuda()
|
471 |
+
self.control_model = self.control_model.cuda()
|
472 |
+
self.first_stage_model = self.first_stage_model.cpu()
|
473 |
+
self.cond_stage_model = self.cond_stage_model.cpu()
|
474 |
+
else:
|
475 |
+
self.model = self.model.cpu()
|
476 |
+
self.control_model = self.control_model.cpu()
|
477 |
+
self.first_stage_model = self.first_stage_model.cuda()
|
478 |
+
self.cond_stage_model = self.cond_stage_model.cuda()
|
cldm/ddim_hacked.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
8 |
+
|
9 |
+
|
10 |
+
class DDIMSampler(object):
|
11 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
12 |
+
super().__init__()
|
13 |
+
self.model = model
|
14 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
15 |
+
self.schedule = schedule
|
16 |
+
|
17 |
+
def register_buffer(self, name, attr):
|
18 |
+
if type(attr) == torch.Tensor:
|
19 |
+
if attr.device != torch.device("cuda"):
|
20 |
+
attr = attr.to(torch.device("cuda"))
|
21 |
+
setattr(self, name, attr)
|
22 |
+
|
23 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
24 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
25 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
26 |
+
alphas_cumprod = self.model.alphas_cumprod
|
27 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
28 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
29 |
+
|
30 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
31 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
32 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
33 |
+
|
34 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
35 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
36 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
37 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
38 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
40 |
+
|
41 |
+
# ddim sampling parameters
|
42 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
43 |
+
ddim_timesteps=self.ddim_timesteps,
|
44 |
+
eta=ddim_eta,verbose=verbose)
|
45 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
46 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
47 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
48 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
49 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
50 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
51 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
52 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
53 |
+
|
54 |
+
@torch.no_grad()
|
55 |
+
def sample(self,
|
56 |
+
S,
|
57 |
+
batch_size,
|
58 |
+
shape,
|
59 |
+
conditioning=None,
|
60 |
+
callback=None,
|
61 |
+
normals_sequence=None,
|
62 |
+
img_callback=None,
|
63 |
+
quantize_x0=False,
|
64 |
+
eta=0.,
|
65 |
+
mask=None,
|
66 |
+
x0=None,
|
67 |
+
temperature=1.,
|
68 |
+
noise_dropout=0.,
|
69 |
+
score_corrector=None,
|
70 |
+
corrector_kwargs=None,
|
71 |
+
verbose=True,
|
72 |
+
x_T=None,
|
73 |
+
log_every_t=100,
|
74 |
+
unconditional_guidance_scale=1.,
|
75 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
76 |
+
dynamic_threshold=None,
|
77 |
+
ucg_schedule=None,
|
78 |
+
**kwargs
|
79 |
+
):
|
80 |
+
if conditioning is not None:
|
81 |
+
if isinstance(conditioning, dict):
|
82 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
83 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
84 |
+
cbs = ctmp.shape[0]
|
85 |
+
if cbs != batch_size:
|
86 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
87 |
+
|
88 |
+
elif isinstance(conditioning, list):
|
89 |
+
for ctmp in conditioning:
|
90 |
+
if ctmp.shape[0] != batch_size:
|
91 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
92 |
+
|
93 |
+
else:
|
94 |
+
if conditioning.shape[0] != batch_size:
|
95 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
96 |
+
|
97 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
98 |
+
# sampling
|
99 |
+
C, H, W = shape
|
100 |
+
size = (batch_size, C, H, W)
|
101 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
102 |
+
|
103 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
104 |
+
callback=callback,
|
105 |
+
img_callback=img_callback,
|
106 |
+
quantize_denoised=quantize_x0,
|
107 |
+
mask=mask, x0=x0,
|
108 |
+
ddim_use_original_steps=False,
|
109 |
+
noise_dropout=noise_dropout,
|
110 |
+
temperature=temperature,
|
111 |
+
score_corrector=score_corrector,
|
112 |
+
corrector_kwargs=corrector_kwargs,
|
113 |
+
x_T=x_T,
|
114 |
+
log_every_t=log_every_t,
|
115 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
116 |
+
unconditional_conditioning=unconditional_conditioning,
|
117 |
+
dynamic_threshold=dynamic_threshold,
|
118 |
+
ucg_schedule=ucg_schedule
|
119 |
+
)
|
120 |
+
return samples, intermediates
|
121 |
+
|
122 |
+
@torch.no_grad()
|
123 |
+
def ddim_sampling(self, cond, shape,
|
124 |
+
x_T=None, ddim_use_original_steps=False,
|
125 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
126 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
127 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
128 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
129 |
+
ucg_schedule=None):
|
130 |
+
device = self.model.betas.device
|
131 |
+
b = shape[0]
|
132 |
+
if x_T is None:
|
133 |
+
img = torch.randn(shape, device=device)
|
134 |
+
else:
|
135 |
+
img = x_T
|
136 |
+
|
137 |
+
if timesteps is None:
|
138 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
139 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
140 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
141 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
142 |
+
|
143 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
144 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
145 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
146 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
147 |
+
|
148 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
149 |
+
|
150 |
+
for i, step in enumerate(iterator):
|
151 |
+
index = total_steps - i - 1
|
152 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
153 |
+
|
154 |
+
if mask is not None:
|
155 |
+
assert x0 is not None
|
156 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
157 |
+
img = img_orig * mask + (1. - mask) * img
|
158 |
+
|
159 |
+
if ucg_schedule is not None:
|
160 |
+
assert len(ucg_schedule) == len(time_range)
|
161 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
162 |
+
|
163 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
164 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
165 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
166 |
+
corrector_kwargs=corrector_kwargs,
|
167 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
168 |
+
unconditional_conditioning=unconditional_conditioning,
|
169 |
+
dynamic_threshold=dynamic_threshold)
|
170 |
+
img, pred_x0 = outs
|
171 |
+
if callback: callback(i)
|
172 |
+
if img_callback: img_callback(pred_x0, i)
|
173 |
+
|
174 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
175 |
+
intermediates['x_inter'].append(img)
|
176 |
+
intermediates['pred_x0'].append(pred_x0)
|
177 |
+
|
178 |
+
return img, intermediates
|
179 |
+
|
180 |
+
@torch.no_grad()
|
181 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
182 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
183 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
184 |
+
dynamic_threshold=None):
|
185 |
+
b, *_, device = *x.shape, x.device
|
186 |
+
|
187 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
188 |
+
model_output = self.model.apply_model(x, t, c)
|
189 |
+
else:
|
190 |
+
model_t = self.model.apply_model(x, t, c)
|
191 |
+
model_uncond = self.model.apply_model(x, t, unconditional_conditioning)
|
192 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
193 |
+
|
194 |
+
if self.model.parameterization == "v":
|
195 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
196 |
+
else:
|
197 |
+
e_t = model_output
|
198 |
+
|
199 |
+
if score_corrector is not None:
|
200 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
201 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
202 |
+
|
203 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
204 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
205 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
206 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
207 |
+
# select parameters corresponding to the currently considered timestep
|
208 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
209 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
210 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
211 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
212 |
+
|
213 |
+
# current prediction for x_0
|
214 |
+
if self.model.parameterization != "v":
|
215 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
216 |
+
else:
|
217 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
218 |
+
|
219 |
+
if quantize_denoised:
|
220 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
221 |
+
|
222 |
+
if dynamic_threshold is not None:
|
223 |
+
raise NotImplementedError()
|
224 |
+
|
225 |
+
# direction pointing to x_t
|
226 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
227 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
228 |
+
if noise_dropout > 0.:
|
229 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
230 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
231 |
+
return x_prev, pred_x0
|
232 |
+
|
233 |
+
@torch.no_grad()
|
234 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
235 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
236 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
237 |
+
num_reference_steps = timesteps.shape[0]
|
238 |
+
|
239 |
+
assert t_enc <= num_reference_steps
|
240 |
+
num_steps = t_enc
|
241 |
+
|
242 |
+
if use_original_steps:
|
243 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
244 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
245 |
+
else:
|
246 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
247 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
248 |
+
|
249 |
+
x_next = x0
|
250 |
+
intermediates = []
|
251 |
+
inter_steps = []
|
252 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
253 |
+
t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long)
|
254 |
+
if unconditional_guidance_scale == 1.:
|
255 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
256 |
+
else:
|
257 |
+
assert unconditional_conditioning is not None
|
258 |
+
e_t_uncond, noise_pred = torch.chunk(
|
259 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
260 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
261 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
262 |
+
|
263 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
264 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
265 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
266 |
+
x_next = xt_weighted + weighted_noise_pred
|
267 |
+
if return_intermediates and i % (
|
268 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
269 |
+
intermediates.append(x_next)
|
270 |
+
inter_steps.append(i)
|
271 |
+
elif return_intermediates and i >= num_steps - 2:
|
272 |
+
intermediates.append(x_next)
|
273 |
+
inter_steps.append(i)
|
274 |
+
if callback: callback(i)
|
275 |
+
|
276 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
277 |
+
if return_intermediates:
|
278 |
+
out.update({'intermediates': intermediates})
|
279 |
+
return x_next, out
|
280 |
+
|
281 |
+
@torch.no_grad()
|
282 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
283 |
+
# fast, but does not allow for exact reconstruction
|
284 |
+
# t serves as an index to gather the correct alphas
|
285 |
+
if use_original_steps:
|
286 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
287 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
288 |
+
else:
|
289 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
290 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
291 |
+
|
292 |
+
if noise is None:
|
293 |
+
noise = torch.randn_like(x0)
|
294 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
295 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
296 |
+
|
297 |
+
@torch.no_grad()
|
298 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
299 |
+
use_original_steps=False, callback=None):
|
300 |
+
|
301 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
302 |
+
timesteps = timesteps[:t_start]
|
303 |
+
|
304 |
+
time_range = np.flip(timesteps)
|
305 |
+
total_steps = timesteps.shape[0]
|
306 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
307 |
+
|
308 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
309 |
+
x_dec = x_latent
|
310 |
+
for i, step in enumerate(iterator):
|
311 |
+
index = total_steps - i - 1
|
312 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
313 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
314 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
315 |
+
unconditional_conditioning=unconditional_conditioning)
|
316 |
+
if callback: callback(i)
|
317 |
+
return x_dec
|
cldm/hack.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import einops
|
3 |
+
|
4 |
+
import ldm.modules.encoders.modules
|
5 |
+
import ldm.modules.attention
|
6 |
+
|
7 |
+
from transformers import logging
|
8 |
+
from ldm.modules.attention import default
|
9 |
+
|
10 |
+
|
11 |
+
def disable_verbosity():
|
12 |
+
logging.set_verbosity_error()
|
13 |
+
print('logging improved.')
|
14 |
+
return
|
15 |
+
|
16 |
+
|
17 |
+
def enable_sliced_attention():
|
18 |
+
ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
|
19 |
+
print('Enabled sliced_attention.')
|
20 |
+
return
|
21 |
+
|
22 |
+
|
23 |
+
def hack_everything(clip_skip=0):
|
24 |
+
disable_verbosity()
|
25 |
+
ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
|
26 |
+
ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
|
27 |
+
print('Enabled clip hacks.')
|
28 |
+
return
|
29 |
+
|
30 |
+
|
31 |
+
# Written by Lvmin
|
32 |
+
def _hacked_clip_forward(self, text):
|
33 |
+
PAD = self.tokenizer.pad_token_id
|
34 |
+
EOS = self.tokenizer.eos_token_id
|
35 |
+
BOS = self.tokenizer.bos_token_id
|
36 |
+
|
37 |
+
def tokenize(t):
|
38 |
+
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
|
39 |
+
|
40 |
+
def transformer_encode(t):
|
41 |
+
if self.clip_skip > 1:
|
42 |
+
rt = self.transformer(input_ids=t, output_hidden_states=True)
|
43 |
+
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
|
44 |
+
else:
|
45 |
+
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
|
46 |
+
|
47 |
+
def split(x):
|
48 |
+
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
|
49 |
+
|
50 |
+
def pad(x, p, i):
|
51 |
+
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
|
52 |
+
|
53 |
+
raw_tokens_list = tokenize(text)
|
54 |
+
tokens_list = []
|
55 |
+
|
56 |
+
for raw_tokens in raw_tokens_list:
|
57 |
+
raw_tokens_123 = split(raw_tokens)
|
58 |
+
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
|
59 |
+
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
|
60 |
+
tokens_list.append(raw_tokens_123)
|
61 |
+
|
62 |
+
tokens_list = torch.IntTensor(tokens_list).to(self.device)
|
63 |
+
|
64 |
+
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
|
65 |
+
y = transformer_encode(feed)
|
66 |
+
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
|
67 |
+
|
68 |
+
return z
|
69 |
+
|
70 |
+
|
71 |
+
# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
|
72 |
+
def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
|
73 |
+
h = self.heads
|
74 |
+
|
75 |
+
q = self.to_q(x)
|
76 |
+
context = default(context, x)
|
77 |
+
k = self.to_k(context)
|
78 |
+
v = self.to_v(context)
|
79 |
+
del context, x
|
80 |
+
|
81 |
+
q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
82 |
+
|
83 |
+
limit = k.shape[0]
|
84 |
+
att_step = 1
|
85 |
+
q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
|
86 |
+
k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
|
87 |
+
v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
|
88 |
+
|
89 |
+
q_chunks.reverse()
|
90 |
+
k_chunks.reverse()
|
91 |
+
v_chunks.reverse()
|
92 |
+
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
93 |
+
del k, q, v
|
94 |
+
for i in range(0, limit, att_step):
|
95 |
+
q_buffer = q_chunks.pop()
|
96 |
+
k_buffer = k_chunks.pop()
|
97 |
+
v_buffer = v_chunks.pop()
|
98 |
+
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
|
99 |
+
|
100 |
+
del k_buffer, q_buffer
|
101 |
+
# attention, what we cannot get enough of, by chunks
|
102 |
+
|
103 |
+
sim_buffer = sim_buffer.softmax(dim=-1)
|
104 |
+
|
105 |
+
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
|
106 |
+
del v_buffer
|
107 |
+
sim[i:i + att_step, :, :] = sim_buffer
|
108 |
+
|
109 |
+
del sim_buffer
|
110 |
+
sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
|
111 |
+
return self.to_out(sim)
|
cldm/logger.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
from PIL import Image
|
7 |
+
from pytorch_lightning.callbacks import Callback
|
8 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
9 |
+
|
10 |
+
|
11 |
+
class ImageLogger(Callback):
|
12 |
+
def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True,
|
13 |
+
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
|
14 |
+
log_images_kwargs=None):
|
15 |
+
super().__init__()
|
16 |
+
self.rescale = rescale
|
17 |
+
self.batch_freq = batch_frequency
|
18 |
+
self.max_images = max_images
|
19 |
+
if not increase_log_steps:
|
20 |
+
self.log_steps = [self.batch_freq]
|
21 |
+
self.clamp = clamp
|
22 |
+
self.disabled = disabled
|
23 |
+
self.log_on_batch_idx = log_on_batch_idx
|
24 |
+
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
25 |
+
self.log_first_step = log_first_step
|
26 |
+
|
27 |
+
@rank_zero_only
|
28 |
+
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx):
|
29 |
+
root = os.path.join(save_dir, "image_log", split)
|
30 |
+
for k in images:
|
31 |
+
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
32 |
+
if self.rescale:
|
33 |
+
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
34 |
+
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
35 |
+
grid = grid.numpy()
|
36 |
+
grid = (grid * 255).astype(np.uint8)
|
37 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
|
38 |
+
path = os.path.join(root, filename)
|
39 |
+
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
40 |
+
Image.fromarray(grid).save(path)
|
41 |
+
|
42 |
+
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
43 |
+
check_idx = batch_idx # if self.log_on_batch_idx else pl_module.global_step
|
44 |
+
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
|
45 |
+
hasattr(pl_module, "log_images") and
|
46 |
+
callable(pl_module.log_images) and
|
47 |
+
self.max_images > 0):
|
48 |
+
logger = type(pl_module.logger)
|
49 |
+
|
50 |
+
is_train = pl_module.training
|
51 |
+
if is_train:
|
52 |
+
pl_module.eval()
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
|
56 |
+
|
57 |
+
for k in images:
|
58 |
+
N = min(images[k].shape[0], self.max_images)
|
59 |
+
images[k] = images[k][:N]
|
60 |
+
if isinstance(images[k], torch.Tensor):
|
61 |
+
images[k] = images[k].detach().cpu()
|
62 |
+
if self.clamp:
|
63 |
+
images[k] = torch.clamp(images[k], -1., 1.)
|
64 |
+
|
65 |
+
self.log_local(pl_module.logger.save_dir, split, images,
|
66 |
+
pl_module.global_step, pl_module.current_epoch, batch_idx)
|
67 |
+
|
68 |
+
if is_train:
|
69 |
+
pl_module.train()
|
70 |
+
|
71 |
+
def check_frequency(self, check_idx):
|
72 |
+
return check_idx % self.batch_freq == 0
|
73 |
+
|
74 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
75 |
+
if not self.disabled:
|
76 |
+
self.log_img(pl_module, batch, batch_idx, split="train")
|
cldm/model.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from ldm.util import instantiate_from_config
|
6 |
+
|
7 |
+
|
8 |
+
def get_state_dict(d):
|
9 |
+
return d.get('state_dict', d)
|
10 |
+
|
11 |
+
|
12 |
+
def load_state_dict(ckpt_path, location='cpu'):
|
13 |
+
_, extension = os.path.splitext(ckpt_path)
|
14 |
+
if extension.lower() == ".safetensors":
|
15 |
+
import safetensors.torch
|
16 |
+
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
17 |
+
else:
|
18 |
+
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
19 |
+
state_dict = get_state_dict(state_dict)
|
20 |
+
print(f'Loaded state_dict from [{ckpt_path}]')
|
21 |
+
return state_dict
|
22 |
+
|
23 |
+
|
24 |
+
def create_model(config_path):
|
25 |
+
config = OmegaConf.load(config_path)
|
26 |
+
model = instantiate_from_config(config.model).cpu()
|
27 |
+
print(f'Loaded model config from [{config_path}]')
|
28 |
+
return model
|
configs/cldm_v21.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
control_stage_config:
|
2 |
+
target: cldm.cldm.ControlNet
|
3 |
+
params:
|
4 |
+
use_checkpoint: True
|
5 |
+
image_size: 32 # unused
|
6 |
+
in_channels: 4
|
7 |
+
hint_channels: 1
|
8 |
+
model_channels: 320
|
9 |
+
attention_resolutions: [ 4, 2, 1 ]
|
10 |
+
num_res_blocks: 2
|
11 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
12 |
+
num_head_channels: 64 # need to fix for flash-attn
|
13 |
+
use_spatial_transformer: True
|
14 |
+
use_linear_in_transformer: True
|
15 |
+
transformer_depth: 1
|
16 |
+
context_dim: 1024
|
17 |
+
legacy: False
|
configs/inference_1024_v1.0.yaml
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: lvdm.models.ddpm3d.LatentVisualDiffusion
|
3 |
+
params:
|
4 |
+
rescale_betas_zero_snr: True
|
5 |
+
parameterization: "v"
|
6 |
+
linear_start: 0.00085
|
7 |
+
linear_end: 0.012
|
8 |
+
num_timesteps_cond: 1
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: video
|
11 |
+
cond_stage_key: caption
|
12 |
+
cond_stage_trainable: False
|
13 |
+
conditioning_key: hybrid
|
14 |
+
image_size: [72, 128]
|
15 |
+
channels: 4
|
16 |
+
scale_by_std: False
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
uncond_type: 'empty_seq'
|
20 |
+
use_dynamic_rescale: true
|
21 |
+
base_scale: 0.7
|
22 |
+
fps_condition_type: 'fps'
|
23 |
+
perframe_ae: True
|
24 |
+
loop_video: true
|
25 |
+
unet_config:
|
26 |
+
target: cldm.cldm.ControlledUnetModel
|
27 |
+
params:
|
28 |
+
in_channels: 8
|
29 |
+
out_channels: 4
|
30 |
+
model_channels: 320
|
31 |
+
attention_resolutions:
|
32 |
+
- 4
|
33 |
+
- 2
|
34 |
+
- 1
|
35 |
+
num_res_blocks: 2
|
36 |
+
channel_mult:
|
37 |
+
- 1
|
38 |
+
- 2
|
39 |
+
- 4
|
40 |
+
- 4
|
41 |
+
dropout: 0.1
|
42 |
+
num_head_channels: 64
|
43 |
+
transformer_depth: 1
|
44 |
+
context_dim: 1024
|
45 |
+
use_linear: true
|
46 |
+
use_checkpoint: True
|
47 |
+
temporal_conv: True
|
48 |
+
temporal_attention: True
|
49 |
+
temporal_selfatt_only: true
|
50 |
+
use_relative_position: false
|
51 |
+
use_causal_attention: False
|
52 |
+
temporal_length: 16
|
53 |
+
addition_attention: true
|
54 |
+
image_cross_attention: true
|
55 |
+
default_fs: 24
|
56 |
+
fs_condition: true
|
57 |
+
|
58 |
+
first_stage_config:
|
59 |
+
target: lvdm.models.autoencoder.AutoencoderKL_Dualref
|
60 |
+
params:
|
61 |
+
embed_dim: 4
|
62 |
+
monitor: val/rec_loss
|
63 |
+
ddconfig:
|
64 |
+
double_z: True
|
65 |
+
z_channels: 4
|
66 |
+
resolution: 256
|
67 |
+
in_channels: 3
|
68 |
+
out_ch: 3
|
69 |
+
ch: 128
|
70 |
+
ch_mult:
|
71 |
+
- 1
|
72 |
+
- 2
|
73 |
+
- 4
|
74 |
+
- 4
|
75 |
+
num_res_blocks: 2
|
76 |
+
attn_resolutions: []
|
77 |
+
dropout: 0.0
|
78 |
+
lossconfig:
|
79 |
+
target: torch.nn.Identity
|
80 |
+
|
81 |
+
cond_stage_config:
|
82 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
|
83 |
+
params:
|
84 |
+
freeze: true
|
85 |
+
layer: "penultimate"
|
86 |
+
|
87 |
+
img_cond_stage_config:
|
88 |
+
target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
|
89 |
+
params:
|
90 |
+
freeze: true
|
91 |
+
|
92 |
+
image_proj_stage_config:
|
93 |
+
target: lvdm.modules.encoders.resampler.Resampler
|
94 |
+
params:
|
95 |
+
dim: 1024
|
96 |
+
depth: 4
|
97 |
+
dim_head: 64
|
98 |
+
heads: 12
|
99 |
+
num_queries: 16
|
100 |
+
embedding_dim: 1280
|
101 |
+
output_dim: 1024
|
102 |
+
ff_mult: 4
|
103 |
+
video_length: 16
|