File size: 10,769 Bytes
f4fac26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from typing import Union

from torch.utils.data import Dataset
from torch import LongTensor, cuda
from transformers import PreTrainedTokenizerFast
from fastparquet import ParquetFile
from torch.utils.data import DataLoader
from datasets import load_dataset
import datasets
import pyarrow.parquet as pq
from numpy import array, int64
from numpy.random import shuffle

# import sys 
# sys.path.extend(['.', '..'])

from config import PROJECT_ROOT

class MyDataset(Dataset):

    def __init__(self, 
                parquet_file: str,
                tokenizer_dir: str,
                keep_in_memory: bool=False,
                max_seq_len: int=512,
                buffer_size: int=40960,
            ) -> None:
        '''
        keep_in_memory: 是否将parquet文件转换为pandas.DataFrame格式存放到内存, 
            False将使用迭代生成器(迭代生成器不支持打乱数据),减少大数据集内存占用
        '''
        super().__init__()

        if cuda.device_count() >= 2 and not keep_in_memory:
            raise ValueError(f'多GPU时使用MyDataset,参数keep_in_memory必须=True,否则无法进行分布式训练. 当前keep_in_memory={keep_in_memory}')

        self.keep_in_memory = keep_in_memory
        self.max_seq_len = max_seq_len

        # 使用pyarrow.parquet读取,to_pandas、for遍历速度更快
        parquet_table = pq.read_table(parquet_file)

        # 获取数据集长度
        self.length = parquet_table.num_rows

        # 缓冲区大小不能超过数据长度
        self.buffer_size = self.length if buffer_size > self.length else buffer_size

        if keep_in_memory:
            # 转化为pandas放到内存中
            self.data = parquet_table.to_pandas()  
        else:
            self.data = parquet_table

        # 初始化tokenizer
        self.tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_dir)

        # 在这里初始化generator
        self.sample_generator = self.item_generator()
    
    def item_generator(self,) -> tuple:
        '''
        一条数据的生成器,防止大数据集OOM
        '''
                
        parquet_table = self.data

        # 生成器是死循环,不用退出,训练结束(epoch结束)会停止调用next()
        buffer_list = []
        while True:

            for prompt, response in zip(parquet_table['prompt'], parquet_table['response']):
                
                # 缓存数据不够,添加数据
                if len(buffer_list) < self.buffer_size:
                    buffer_list.append( (prompt.as_py(), response.as_py()) )
                    continue
                
                # 执行到这里,缓存区够了,打乱数据
                shuffle(buffer_list)
                for p, r in buffer_list:
                    # 在这里迭代
                    yield  p, r

                # 迭代完成,清空缓存区
                buffer_list = []
    
    def __getitem__(self, index):
        '''
        返回一条样本
        '''
        if self.keep_in_memory:
            data = self.data
            prompt, response = data.iloc[index].prompt, data.iloc[index].response
        else:
            prompt, response = next(self.sample_generator)

        max_seq_len = self.max_seq_len - 5 # len('[EOS]') = 5
        # add an eos token note that end of resopnse, using in generate.
        return f"{prompt[0: max_seq_len]}[EOS]", f"{response[0: max_seq_len]}[EOS]"

    def collate_fn(self, data: list[list]) -> dict:
        '''
        合并一个批次数据返回
        '''
        tokenizer = self.tokenizer

        prompt = tokenizer([item[0] for item in data], padding=True, return_token_type_ids=False)
        response = tokenizer([item[1] for item in data], padding=True, return_token_type_ids=False)

        input_ids = array(prompt.input_ids, dtype=int64)
        input_mask = array(prompt.attention_mask, dtype=int64)
        target_ids = array(response.input_ids, dtype=int64)

        ret = {
            'input_ids': LongTensor(input_ids),
            'input_mask': LongTensor(input_mask),
            'target_ids': LongTensor(target_ids),
        }
        return ret
    
    def __len__(self) -> int:
        return self.length

class ParquetDataset:
 
    def __init__(self,  
                parquet_file: Union[str, dict],
                tokenizer_dir: str, 
                keep_in_memory: bool=False,
                cache_dir: str='./.cache',
                buffer_size: int=10240, 
                max_len: int=512, 
                seed: int=23333
            ) -> None:
        '''
        使用huggingface的loaddataset方法加载,
        parquet_file: 单个文件,此时只能使用dataset['train'],
                多个文件请用:parquet_file={'train': 'train.parquet', 'test': 'test.parquet', 'validation': 'validation.parquet'})
                其他用法见:https://huggingface.co/docs/datasets/loading
        keep_in_memory: 是否将parquet文件转换为pandas.DataFrame格式存放到内存
        '''
        self.keep_in_memory = keep_in_memory
        self.len_dict = self.__get_all_parquet_file_size(parquet_file=parquet_file)

        self.max_len = max_len
        self.tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_dir)

        self.tokenizer = self.tokenizer
        
        streaming = False if keep_in_memory else True 
        # streaming=True,否则大数据集OOM
        dataset = load_dataset('parquet', data_files=parquet_file, cache_dir=cache_dir, streaming=streaming) 

        # 这里的batch_size不是训练的batch_size,是传递给precess_batch_func批处理的batch_size
        dataset = dataset.map(self.precess_batch_func, batched=True, batch_size=buffer_size, \
                            remove_columns=['prompt', 'response'], fn_kwargs={'max_len': max_len})

        dataset = dataset.with_format(type="torch")

        if keep_in_memory:
           dataset = dataset.shuffle(seed=seed, keep_in_memory=keep_in_memory)
        else:
            # 只能打乱缓冲区内的数据,不能打乱整个数据集,因此可以将缓存区设置稍微大一些
            dataset = dataset.shuffle(seed=seed, buffer_size=buffer_size)

        self.dataset = dataset
    
    @staticmethod
    def precess_batch_func(item: dict, max_len: int=512) -> dict:
        '''
        添加EOS
        '''
        max_len -= 5 # len('[EOS]') = 5
        for i in range(len(item['prompt'])):
            item['prompt'][i] = f"{item['prompt'][i][0: max_len]}[EOS]"
        for i in range(len(item['response'])):
            item['response'][i] = f"{item['response'][i][0: max_len]}[EOS]"

        return {
            'prompt': item['prompt'],
            'response': item['response'],
        }
    
    def collate_fn(self, data: list[list]) -> dict:
        '''
        合并一个批次数据返回
        '''
        
        tokenizer = self.tokenizer
        prompt = [item['prompt'] for item in data ]
        response = [item['response'] for item in data ]

        # 按批次pad
        prompt_encoded = tokenizer(prompt, padding=True, return_token_type_ids=False)
        response_encoded = tokenizer(response, padding=True, return_token_type_ids=False)

        input_ids = array(prompt_encoded.input_ids, dtype=int64)
        input_mask = array(prompt_encoded.attention_mask, dtype=int64)
        target_ids = array(response_encoded.input_ids, dtype=int64)

        ret = {
            'input_ids': LongTensor(input_ids),
            'input_mask': LongTensor(input_mask),
            'target_ids': LongTensor(target_ids),
        }
        return ret
    def __getitem__(self, index: str) -> datasets.Dataset:
        '''
        魔术方法,实现下标访问,如:dataset['train']、dataset['validation']、dataset['test']
        '''
        return self.dataset[index]
    
    def __get_all_parquet_file_size(self, parquet_file: Union[str, dict]) -> dict:
        '''
        获取所有parquet file的长度
        '''
        len_dict = dict()
        if type(parquet_file) is str:
            train_len = self.__get_size_of_praquet(parquet_file)
            len_dict['train'] = train_len
        
        if type(parquet_file) is dict:
            for split_type, file in parquet_file.items():
                len_dict[split_type] = self.__get_size_of_praquet(file)
        
        return len_dict
    
    def __get_size_of_praquet(self, file_name: str) -> int:
        '''
        获取一个parquet文件的行数
        '''
        parquet_data = pq.read_table(file_name)

        return parquet_data.num_rows 
    
    def __len__(self) -> int:
        '''
        魔术方法,如果只有一个数据集,返回默认数据集大小
        '''
        if len(self.len_dict) == 1:
            return self.len_dict['train']
        else:
            raise Exception("this dataset contains many splited datasets, use `get_dataset_size(split_name)` function to get length, e.g: get_dataset_size('train')")
    
    def get_dataset_size(self, split_name: str) -> int:
        '''
        获取每个切分数据集的长度
        split_name可取:train、validation、test
        '''
        return self.len_dict[split_name]
    
    def get_tokenizer(self, ) -> PreTrainedTokenizerFast:
        return self.tokenizer



if __name__ == '__main__':
    parquet_file = PROJECT_ROOT + '/data/my_valid_dataset.parquet'
    tokenizer_dir = PROJECT_ROOT + '/model_save/tokenizer'

    # example 1:
    dataset = MyDataset(parquet_file, tokenizer_dir, keep_in_memory=False, max_seq_len=128)
    print('\nexample 1, dataset size: ', len(dataset))
    dataloader = DataLoader(dataset, batch_size=32, collate_fn=dataset.collate_fn)

    for epoch in range(2):
        print('epoch: {}'.format(epoch))
        for step, batch in enumerate(dataloader):
            x, x_mask, y = batch['input_ids'], batch['input_mask'], batch['target_ids']
            print('step:{}'.format(step), x.shape, x_mask.shape, y.shape)
            if step == 5:
                break

    
    # exit(0)
    # example 2:
    dataset = ParquetDataset(parquet_file, tokenizer_dir, keep_in_memory=True, max_len=32)
    dataloader = DataLoader(dataset['train'], batch_size=32, collate_fn=dataset.collate_fn)
    print('\nexample 2, dataset size: ', dataset.get_dataset_size('train'))

    for epoch in range(2):
        print('epoch: {}'.format(epoch))
        for step, batch in enumerate(dataloader):
            x, x_mask, y = batch['input_ids'], batch['input_mask'], batch['target_ids']
            print('step:{}'.format(step), x.shape, x_mask.shape, y.shape)
            if step == 5:
                break