Spaces:
Running
Running
File size: 13,075 Bytes
a32a92f da6e1bc 3ed02d5 da6e1bc 338dc9b 3ed02d5 da6e1bc 98c6811 9002fc2 da6e1bc b311dd5 8941a67 260c1a3 2cdada4 98c6811 2cdada4 9983b5f 2cdada4 f3a09a2 2cdada4 8941a67 2cdada4 98c6811 8941a67 260c1a3 2cdada4 260c1a3 2cdada4 da6e1bc 52abc5b f3a09a2 2cdada4 f3a09a2 2cdada4 52abc5b da6e1bc a32a92f 2cdada4 9983b5f c9e9db6 2cdada4 a73f888 2cdada4 a73f888 2cdada4 a73f888 2cdada4 a73f888 c790fdb 2cdada4 b311dd5 9983b5f 2cdada4 c790fdb 9983b5f 2cdada4 9983b5f 338dc9b 2cdada4 338dc9b da6e1bc 338dc9b da6e1bc f840423 da6e1bc 913253a c790fdb 98c6811 da6e1bc 913253a da6e1bc 7c06aef c790fdb 2cdada4 338dc9b c790fdb 338dc9b 2cdada4 da6e1bc 2cdada4 da6e1bc 2cdada4 9002fc2 3ed02d5 9002fc2 d91b022 9002fc2 ebaf279 9002fc2 a32a92f 9002fc2 3ed02d5 2cdada4 3ed02d5 a32a92f ebaf279 3ed02d5 9002fc2 3ed02d5 9002fc2 2cdada4 9002fc2 b39df3c 2cdada4 f840423 2cdada4 b311dd5 a73f888 b311dd5 2cdada4 b311dd5 2cdada4 b311dd5 2cdada4 338dc9b 2cdada4 338dc9b b311dd5 a73f888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import re
from datetime import date
from os import getenv
import pandas as pd
from aiolimiter import AsyncLimiter
from dotenv import load_dotenv
from google.cloud import translate_v2 as translate
from huggingface_hub import AsyncInferenceClient, HfApi
from joblib.memory import Memory
from openai import AsyncOpenAI, BadRequestError
from requests import HTTPError, get
# for development purposes, all languages will be evaluated on the fast models
# and only a sample of languages will be evaluated on all models
important_models = [
"meta-llama/llama-4-maverick", # 0.6$
"meta-llama/llama-3.3-70b-instruct", # 0.3$
"meta-llama/llama-3.1-70b-instruct", # 0.3$
"meta-llama/llama-3-70b-instruct", # 0.4$
# "meta-llama/llama-2-70b-chat", # 0.9$; not properly supported by OpenRouter
"openai/gpt-5",
"openai/gpt-5-mini",
"openai/gpt-5-nano",
"openai/gpt-4.1", # 8$
"openai/gpt-4o", # 10$
"openai/gpt-3.5-turbo", # $1.50
"openai/gpt-oss-120b",
"anthropic/claude-4.5-sonnet",
"anthropic/claude-4.5-haiku",
"anthropic/claude-opus-4.1", # 15$
"anthropic/claude-4-sonnet",
"anthropic/claude-3.7-sonnet", # 15$
"anthropic/claude-3.5-sonnet",
"mistralai/mistral-small-3.2-24b-instruct", # 0.3$
"mistralai/mistral-medium-3.1",
"mistralai/mistral-saba", # 0.6$
"mistralai/mistral-nemo", # 0.08$
"google/gemini-2.5-pro", # $10
"google/gemini-2.5-flash", # 0.6$
"google/gemini-2.5-flash-lite", # 0.3$
"google/gemma-3-27b-it", # 0.2$
# "x-ai/grok-4", # $15
# "x-ai/grok-3", # $15
"cohere/command-a",
"qwen/qwen3-32b",
"qwen/qwen3-235b-a22b",
"qwen/qwen3-30b-a3b", # 0.29$
# "qwen/qwen-turbo", # 0.2$; recognizes "inappropriate content"
# "qwen/qwq-32b", # 0.2$
# "qwen/qwen-2.5-72b-instruct", # 0.39$
# "qwen/qwen-2-72b-instruct", # 0.9$
"deepseek/deepseek-v3.2-exp",
"microsoft/phi-4", # 0.07$
"amazon/nova-pro-v1", # 0.09$
"moonshotai/kimi-k2", # 0.6$
"baidu/ernie-4.5-300b-a47b",
]
blocklist = [
"google/gemini-2.5-pro-preview",
# "google/gemini-2.5-pro",
"google/gemini-2.5-flash-preview",
"google/gemini-2.5-flash-lite-preview",
"google/gemini-2.5-flash-preview-04-17",
"google/gemini-2.5-flash-preview-05-20",
"google/gemini-2.5-flash-lite-preview-06-17",
"google/gemini-2.5-pro-preview-06-05",
"google/gemini-2.5-pro-preview-05-06",
"perplexity/sonar-deep-research",
"perplexity/sonar-reasoning",
"perplexity/sonar-reasoning-pro",
"qwen/qwen3-vl-30b-a3b-thinking",
"alpindale/goliath-120b"
]
transcription_models = [
"elevenlabs/scribe_v1",
"openai/whisper-large-v3",
# "openai/whisper-small",
# "facebook/seamless-m4t-v2-large",
]
cache = Memory(location=".cache", verbose=0).cache
@cache
def load_or_metadata(date: date):
return get("https://openrouter.ai/api/frontend/models").json()["data"]
def get_or_metadata(permaslug):
models = load_or_metadata(date.today())
slugs = [
m
for m in models
if (m["permaslug"] == permaslug or m["slug"] == permaslug)
# ensure that a provider endpoint is available
and m["endpoint"]
# exclude free models
# the problem is that free models typically have very high rate-limiting
and not m["endpoint"]["is_free"]
# exclude providers that train on user data
# this is crucial since we are submitting benchmark data
# make sure to additionally configure this in OpenRouter settings to avoid mistakes!
and m["endpoint"]["provider_info"]["dataPolicy"]["training"] is False
]
if len(slugs) == 0:
print(f"no appropriate model (not free and no user data training) found for {permaslug}")
return slugs[0] if len(slugs) >= 1 else None
@cache
def get_historical_popular_models(date: date):
# date parameter is used for daily caching
try:
raw = get("https://openrouter.ai/rankings").text
# Extract model data from rankingData using regex
# Find all count and model_permaslug pairs in the data
# Format: "count":number,"model_permaslug":"model/name"
pattern = r"\\\"count\\\":([\d.]+).*?\\\"model_permaslug\\\":\\\"([^\\\"]+)\\\""
matches = re.findall(pattern, raw)
if matches:
# Aggregate model counts
model_counts = {}
for count_str, model_slug in matches:
count = float(count_str)
if not model_slug.startswith("openrouter") and model_slug != "Others":
# Remove variant suffixes for aggregation
base_model = model_slug.split(":")[0]
model_counts[base_model] = model_counts.get(base_model, 0) + count
# Sort by popularity and return top models
sorted_models = sorted(
model_counts.items(), key=lambda x: x[1], reverse=True
)
result = []
for model_slug, count in sorted_models:
result.append({"slug": model_slug, "count": int(count)})
return result
else:
return []
except Exception as e:
return []
@cache
def get_current_popular_models(date: date):
# date parameter is used for daily caching
try:
raw = get("https://openrouter.ai/rankings?view=day").text
# Extract model data from daily rankings
# Find all count and model_permaslug pairs in the daily data
pattern = r"\\\"count\\\":([\d.]+).*?\\\"model_permaslug\\\":\\\"([^\\\"]+)\\\""
matches = re.findall(pattern, raw)
if matches:
# Aggregate model counts
model_counts = {}
for count_str, model_slug in matches:
count = float(count_str)
if not model_slug.startswith("openrouter") and model_slug != "Others":
# Remove variant suffixes for aggregation
base_model = model_slug.split(":")[0]
model_counts[base_model] = model_counts.get(base_model, 0) + count
# Sort by popularity and return top models
sorted_models = sorted(
model_counts.items(), key=lambda x: x[1], reverse=True
)
result = []
for model_slug, count in sorted_models:
result.append({"slug": model_slug, "count": int(count)})
return result
else:
return []
except Exception as e:
return []
def get_translation_models():
return pd.DataFrame(
[
{
"id": "google/translate-v2",
"name": "Google Translate",
"provider_name": "Google",
"cost": 20.0,
"train_on_prompts": False, # they don't do it in the API
"size": None,
"type": "closed-source",
"license": None,
"tasks": ["translation_from", "translation_to"],
}
]
)
load_dotenv()
client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=getenv("OPENROUTER_API_KEY"),
)
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1)
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1)
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1)
google_rate_limit = AsyncLimiter(max_rate=10, time_period=1)
@cache
async def complete(**kwargs) -> str | None:
async with openrouter_rate_limit:
try:
response = await client.chat.completions.create(**kwargs)
except BadRequestError as e:
if "filtered" in e.message:
return None
raise e
if not response.choices:
raise Exception(response)
return response.choices[0].message.content.strip()
translate_client = translate.Client()
def get_google_supported_languages():
return [l["language"] for l in translate_client.get_languages()]
@cache
async def translate_google(text, source_language, target_language):
async with google_rate_limit:
response = translate_client.translate(
text, source_language=source_language, target_language=target_language
)
return response["translatedText"]
# @cache
# async def transcribe_elevenlabs(path, model):
# modelname = model.split("/")[-1]
# client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY"))
# async with elevenlabs_rate_limit:
# with open(path, "rb") as file:
# response = await client.speech_to_text.convert(
# model_id=modelname, file=file
# )
# return response.text
# @cache
# async def transcribe_huggingface(path, model):
# client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN"))
# async with huggingface_rate_limit:
# output = await client.automatic_speech_recognition(model=model, audio=path)
# return output.text
# async def transcribe(path, model="elevenlabs/scribe_v1"):
# provider, modelname = model.split("/")
# match provider:
# case "elevenlabs":
# return await transcribe_elevenlabs(path, modelname)
# case "openai" | "facebook":
# return await transcribe_huggingface(path, model)
# case _:
# raise ValueError(f"Model {model} not supported")
api = HfApi()
@cache
def get_hf_metadata(row):
# get metadata from the HuggingFace API
empty = {
"hf_id": None,
"creation_date": None,
"size": None,
"type": "closed-source",
"license": None,
}
if not row:
return empty
id = row["hf_slug"] or row["slug"].split(":")[0]
if not id:
return empty
try:
info = api.model_info(id)
license = ""
if (
info.card_data
and hasattr(info.card_data, "license")
and info.card_data.license
):
license = (
info.card_data.license.replace("-", " ").replace("mit", "MIT").title()
)
return {
"hf_id": info.id,
"creation_date": info.created_at,
"size": info.safetensors.total if info.safetensors else None,
"type": "open-source",
"license": license,
}
except HTTPError:
return empty
def get_cost(row):
try:
cost = float(row["endpoint"]["pricing"]["completion"])
return round(cost * 1_000_000, 2)
except (TypeError, KeyError):
return None
def get_training_policy(row):
# get openrouter info whether the provider may train on prompts
# (this needs to be thoroughly avoided for our benchmark prompts!)
return row["endpoint"]["provider_info"]["dataPolicy"]["training"]
@cache
def load_models(date: date) -> pd.DataFrame:
# popular_models = (
# get_historical_popular_models(date.today())[:20]
# + get_current_popular_models(date.today())[:10]
# )
popular_models = []
popular_models = [m["slug"] for m in popular_models]
all_model_candidates = set(important_models + popular_models) - set(blocklist)
# Validate models exist on OpenRouter before including them
valid_models = []
for model_id in all_model_candidates:
metadata = get_or_metadata(model_id)
if metadata is not None:
valid_models.append(model_id)
models = pd.DataFrame(sorted(valid_models), columns=["id"])
or_metadata = models["id"].apply(get_or_metadata) # TODO this is double-doubled
hf_metadata = or_metadata.apply(get_hf_metadata)
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date
creation_date_or = pd.to_datetime(
or_metadata.str["created_at"].str.split("T").str[0]
).dt.date
models = models.assign(
name=or_metadata.str["short_name"]
.str.replace(" (free)", "")
.str.replace(" (self-moderated)", ""),
provider_name=or_metadata.str["name"].str.split(": ").str[0],
# openrouter_metadata=or_metadata.astype(str),
cost=or_metadata.apply(get_cost),
train_on_prompts=or_metadata.apply(get_training_policy),
hf_id=hf_metadata.str["hf_id"],
size=hf_metadata.str["size"],
type=hf_metadata.str["type"],
license=hf_metadata.str["license"],
creation_date=creation_date_hf.combine_first(creation_date_or),
)
models.to_json(
"models_unfiltered.json", orient="records", indent=2, force_ascii=False
)
# Filter out expensive models to keep costs reasonable
models = models[models["cost"] <= 15.0].reset_index(drop=True)
models["tasks"] = [
[
"translation_from",
"translation_to",
"classification",
"mmlu",
"arc",
"truthfulqa",
"mgsm",
]
] * len(models)
models = pd.concat([models, get_translation_models()])
return models
models = load_models(date.today())
|