Spaces:
Running
Running
David Pomerenke
commited on
Commit
·
3ed02d5
1
Parent(s):
2f01096
Params and license metadata from HF API
Browse files- evals/main.py +28 -19
- evals/models.py +35 -1
- frontend/public/results.json +25 -0
- frontend/src/components/ModelTable.js +32 -7
evals/main.py
CHANGED
|
@@ -19,6 +19,7 @@ transcription_langs_eval_detailed = languages.iloc[:5]
|
|
| 19 |
|
| 20 |
# ===== run evaluation and aggregate results =====
|
| 21 |
|
|
|
|
| 22 |
async def evaluate():
|
| 23 |
print("running evaluations")
|
| 24 |
results = [
|
|
@@ -26,7 +27,7 @@ async def evaluate():
|
|
| 26 |
for task in tasks
|
| 27 |
for i in range(n_sentences)
|
| 28 |
for original_language in langs_eval.itertuples()
|
| 29 |
-
for model in models
|
| 30 |
if original_language.in_benchmark
|
| 31 |
and (
|
| 32 |
model == model_fast
|
|
@@ -35,6 +36,7 @@ async def evaluate():
|
|
| 35 |
]
|
| 36 |
return await tqdm_asyncio.gather(*results, miniters=1)
|
| 37 |
|
|
|
|
| 38 |
def aggregate(results):
|
| 39 |
results = pd.DataFrame([r for rs in results for r in rs])
|
| 40 |
results = (
|
|
@@ -58,32 +60,39 @@ def aggregate(results):
|
|
| 58 |
)
|
| 59 |
return results, lang_results, model_results, task_results
|
| 60 |
|
|
|
|
| 61 |
def mean(lst):
|
| 62 |
return sum(lst) / len(lst) if lst else None
|
| 63 |
|
| 64 |
|
| 65 |
def fmt_name(s):
|
| 66 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
def serialize(df):
|
| 69 |
return df.replace({np.nan: None}).to_dict(orient="records")
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
).fillna(0)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
]
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
async def main():
|
|
@@ -97,7 +106,7 @@ async def main():
|
|
| 97 |
}
|
| 98 |
with open("results.json", "w") as f:
|
| 99 |
json.dump(all_results, f, indent=2, ensure_ascii=False)
|
| 100 |
-
|
| 101 |
model_table = make_model_table(model_results)
|
| 102 |
all_tables = {
|
| 103 |
"model_table": serialize(model_table),
|
|
|
|
| 19 |
|
| 20 |
# ===== run evaluation and aggregate results =====
|
| 21 |
|
| 22 |
+
|
| 23 |
async def evaluate():
|
| 24 |
print("running evaluations")
|
| 25 |
results = [
|
|
|
|
| 27 |
for task in tasks
|
| 28 |
for i in range(n_sentences)
|
| 29 |
for original_language in langs_eval.itertuples()
|
| 30 |
+
for model in models["id"]
|
| 31 |
if original_language.in_benchmark
|
| 32 |
and (
|
| 33 |
model == model_fast
|
|
|
|
| 36 |
]
|
| 37 |
return await tqdm_asyncio.gather(*results, miniters=1)
|
| 38 |
|
| 39 |
+
|
| 40 |
def aggregate(results):
|
| 41 |
results = pd.DataFrame([r for rs in results for r in rs])
|
| 42 |
results = (
|
|
|
|
| 60 |
)
|
| 61 |
return results, lang_results, model_results, task_results
|
| 62 |
|
| 63 |
+
|
| 64 |
def mean(lst):
|
| 65 |
return sum(lst) / len(lst) if lst else None
|
| 66 |
|
| 67 |
|
| 68 |
def fmt_name(s):
|
| 69 |
+
return (
|
| 70 |
+
" ".join(w.capitalize() for w in s.split("-"))
|
| 71 |
+
.replace("Gpt", "GPT")
|
| 72 |
+
.replace("ai", "AI")
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
|
| 76 |
def serialize(df):
|
| 77 |
return df.replace({np.nan: None}).to_dict(orient="records")
|
| 78 |
|
| 79 |
+
|
| 80 |
+
def make_model_table(df):
|
| 81 |
+
df["task_metric"] = df["task"] + "_" + df["metric"]
|
| 82 |
+
df = df.drop(columns=["task", "metric"])
|
| 83 |
+
task_metrics = df["task_metric"].unique()
|
| 84 |
+
df = df.pivot(index="model", columns="task_metric", values="score").fillna(0)
|
| 85 |
+
df["average"] = df[task_metrics].mean(axis=1)
|
| 86 |
+
df = df.sort_values(by="average", ascending=False).reset_index()
|
| 87 |
+
for row in [*task_metrics, "average"]:
|
| 88 |
+
df[row] = df[row].round(2)
|
| 89 |
+
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
| 90 |
+
df["creation_date"] = df["creation_date"].dt.strftime("%Y-%m-%d")
|
| 91 |
+
df["provider"] = df["model"].str.split("/").str[0].apply(fmt_name)
|
| 92 |
+
df["model"] = df["model"].str.split("/").str[1].apply(fmt_name)
|
| 93 |
+
df["rank"] = df.index + 1
|
| 94 |
+
df = df[["rank", "provider", "model", "hf_id", "creation_date", "size", "type", "license", "average", *task_metrics]]
|
| 95 |
+
return df
|
| 96 |
|
| 97 |
|
| 98 |
async def main():
|
|
|
|
| 106 |
}
|
| 107 |
with open("results.json", "w") as f:
|
| 108 |
json.dump(all_results, f, indent=2, ensure_ascii=False)
|
| 109 |
+
|
| 110 |
model_table = make_model_table(model_results)
|
| 111 |
all_tables = {
|
| 112 |
"model_table": serialize(model_table),
|
evals/models.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
from os import getenv
|
| 2 |
|
|
|
|
| 3 |
from aiolimiter import AsyncLimiter
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
from elevenlabs import AsyncElevenLabs
|
| 6 |
-
from huggingface_hub import AsyncInferenceClient
|
| 7 |
from joblib.memory import Memory
|
| 8 |
from openai import AsyncOpenAI
|
|
|
|
| 9 |
|
| 10 |
# for development purposes, all languages will be evaluated on the fast models
|
| 11 |
# and only a sample of languages will be evaluated on all models
|
|
@@ -80,3 +82,35 @@ async def transcribe(path, model="elevenlabs/scribe_v1"):
|
|
| 80 |
return await transcribe_huggingface(path, model)
|
| 81 |
case _:
|
| 82 |
raise ValueError(f"Model {model} not supported")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from os import getenv
|
| 2 |
|
| 3 |
+
import pandas as pd
|
| 4 |
from aiolimiter import AsyncLimiter
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
from elevenlabs import AsyncElevenLabs
|
| 7 |
+
from huggingface_hub import AsyncInferenceClient, HfApi
|
| 8 |
from joblib.memory import Memory
|
| 9 |
from openai import AsyncOpenAI
|
| 10 |
+
from requests import HTTPError
|
| 11 |
|
| 12 |
# for development purposes, all languages will be evaluated on the fast models
|
| 13 |
# and only a sample of languages will be evaluated on all models
|
|
|
|
| 82 |
return await transcribe_huggingface(path, model)
|
| 83 |
case _:
|
| 84 |
raise ValueError(f"Model {model} not supported")
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
models = pd.DataFrame(models, columns=["id"])
|
| 88 |
+
|
| 89 |
+
api = HfApi()
|
| 90 |
+
|
| 91 |
+
def get_metadata(id):
|
| 92 |
+
try:
|
| 93 |
+
info = api.model_info(id)
|
| 94 |
+
license = info.card_data.license.replace("_", " ").replace("mit", "MIT").title()
|
| 95 |
+
return {
|
| 96 |
+
"hf_id": info.id,
|
| 97 |
+
"creation_date": info.created_at,
|
| 98 |
+
"size": info.safetensors.total,
|
| 99 |
+
"type": "Open",
|
| 100 |
+
"license": license,
|
| 101 |
+
}
|
| 102 |
+
except HTTPError:
|
| 103 |
+
return {
|
| 104 |
+
"hf_id": None,
|
| 105 |
+
"creation_date": None,
|
| 106 |
+
"size": None,
|
| 107 |
+
"type": "Commercial",
|
| 108 |
+
"license": None,
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
models["hf_id"] = models["id"].apply(get_metadata).str["hf_id"]
|
| 112 |
+
models["creation_date"] = models["id"].apply(get_metadata).str["creation_date"]
|
| 113 |
+
models["creation_date"] = pd.to_datetime(models["creation_date"])
|
| 114 |
+
models["size"] = models["id"].apply(get_metadata).str["size"]
|
| 115 |
+
models["type"] = models["id"].apply(get_metadata).str["type"]
|
| 116 |
+
models["license"] = models["id"].apply(get_metadata).str["license"]
|
frontend/public/results.json
CHANGED
|
@@ -4,6 +4,11 @@
|
|
| 4 |
"rank": 1,
|
| 5 |
"provider": "Google",
|
| 6 |
"model": "Gemini 2.0 Flash 001",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"average": 0.72,
|
| 8 |
"classification_accuracy": 0.87,
|
| 9 |
"language_modeling_chrf": 0.96,
|
|
@@ -14,6 +19,11 @@
|
|
| 14 |
"rank": 2,
|
| 15 |
"provider": "Google",
|
| 16 |
"model": "Gemma 3 27b It",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
"average": 0.65,
|
| 18 |
"classification_accuracy": 0.72,
|
| 19 |
"language_modeling_chrf": 0.96,
|
|
@@ -24,6 +34,11 @@
|
|
| 24 |
"rank": 3,
|
| 25 |
"provider": "OpenAI",
|
| 26 |
"model": "GPT 4o Mini",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"average": 0.6,
|
| 28 |
"classification_accuracy": 0.52,
|
| 29 |
"language_modeling_chrf": 0.95,
|
|
@@ -34,6 +49,11 @@
|
|
| 34 |
"rank": 4,
|
| 35 |
"provider": "MistralAI",
|
| 36 |
"model": "Mistral Small 24b Instruct 2501",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
"average": 0.58,
|
| 38 |
"classification_accuracy": 0.55,
|
| 39 |
"language_modeling_chrf": 0.86,
|
|
@@ -44,6 +64,11 @@
|
|
| 44 |
"rank": 5,
|
| 45 |
"provider": "Meta Llama",
|
| 46 |
"model": "Llama 3.3 70b Instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
"average": 0.56,
|
| 48 |
"classification_accuracy": 0.5,
|
| 49 |
"language_modeling_chrf": 0.94,
|
|
|
|
| 4 |
"rank": 1,
|
| 5 |
"provider": "Google",
|
| 6 |
"model": "Gemini 2.0 Flash 001",
|
| 7 |
+
"hf_id": null,
|
| 8 |
+
"creation_date": null,
|
| 9 |
+
"size": null,
|
| 10 |
+
"type": "Commercial",
|
| 11 |
+
"license": null,
|
| 12 |
"average": 0.72,
|
| 13 |
"classification_accuracy": 0.87,
|
| 14 |
"language_modeling_chrf": 0.96,
|
|
|
|
| 19 |
"rank": 2,
|
| 20 |
"provider": "Google",
|
| 21 |
"model": "Gemma 3 27b It",
|
| 22 |
+
"hf_id": "google/gemma-3-27b-it",
|
| 23 |
+
"creation_date": "2025-03-01",
|
| 24 |
+
"size": 27432406640.0,
|
| 25 |
+
"type": "Open",
|
| 26 |
+
"license": "Gemma",
|
| 27 |
"average": 0.65,
|
| 28 |
"classification_accuracy": 0.72,
|
| 29 |
"language_modeling_chrf": 0.96,
|
|
|
|
| 34 |
"rank": 3,
|
| 35 |
"provider": "OpenAI",
|
| 36 |
"model": "GPT 4o Mini",
|
| 37 |
+
"hf_id": null,
|
| 38 |
+
"creation_date": null,
|
| 39 |
+
"size": null,
|
| 40 |
+
"type": "Commercial",
|
| 41 |
+
"license": null,
|
| 42 |
"average": 0.6,
|
| 43 |
"classification_accuracy": 0.52,
|
| 44 |
"language_modeling_chrf": 0.95,
|
|
|
|
| 49 |
"rank": 4,
|
| 50 |
"provider": "MistralAI",
|
| 51 |
"model": "Mistral Small 24b Instruct 2501",
|
| 52 |
+
"hf_id": "mistralai/Mistral-Small-24B-Instruct-2501",
|
| 53 |
+
"creation_date": "2025-01-28",
|
| 54 |
+
"size": 23572403200.0,
|
| 55 |
+
"type": "Open",
|
| 56 |
+
"license": "Apache-2.0",
|
| 57 |
"average": 0.58,
|
| 58 |
"classification_accuracy": 0.55,
|
| 59 |
"language_modeling_chrf": 0.86,
|
|
|
|
| 64 |
"rank": 5,
|
| 65 |
"provider": "Meta Llama",
|
| 66 |
"model": "Llama 3.3 70b Instruct",
|
| 67 |
+
"hf_id": "meta-llama/Llama-3.3-70B-Instruct",
|
| 68 |
+
"creation_date": "2024-11-26",
|
| 69 |
+
"size": 70553706496.0,
|
| 70 |
+
"type": "Open",
|
| 71 |
+
"license": "Llama3.3",
|
| 72 |
"average": 0.56,
|
| 73 |
"classification_accuracy": 0.5,
|
| 74 |
"language_modeling_chrf": 0.94,
|
frontend/src/components/ModelTable.js
CHANGED
|
@@ -32,15 +32,40 @@ const ModelTable = ({ data }) => {
|
|
| 32 |
);
|
| 33 |
};
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
return (
|
| 36 |
-
<DataTable value={table} header={<>AI Models</>} sortField="average" removableSort filters={filters} filterDisplay="menu">
|
| 37 |
<Column field="rank" body={rankBodyTemplate} />
|
| 38 |
-
<Column field="provider" header="Provider" filter filterElement={providerRowFilterTemplate} showFilterMatchModes={false} />
|
| 39 |
-
<Column field="model" header="Model" filter showFilterMatchModes={false} />
|
| 40 |
-
<Column field="
|
| 41 |
-
<Column field="
|
| 42 |
-
<Column field="
|
| 43 |
-
<Column field="
|
|
|
|
|
|
|
| 44 |
</DataTable>
|
| 45 |
);
|
| 46 |
};
|
|
|
|
| 32 |
);
|
| 33 |
};
|
| 34 |
|
| 35 |
+
const sizeBodyTemplate = (rowData) => {
|
| 36 |
+
const size = rowData.size;
|
| 37 |
+
if (size === null) {
|
| 38 |
+
return <div>N/A</div>;
|
| 39 |
+
}
|
| 40 |
+
let sizeStr;
|
| 41 |
+
if (size < 1000) {
|
| 42 |
+
sizeStr = size.toFixed(0) + "";
|
| 43 |
+
} else if (size < 1000 * 1000) {
|
| 44 |
+
sizeStr = (size / 1000).toFixed(0) + "K";
|
| 45 |
+
} else if (size < 1000 * 1000 * 1000) {
|
| 46 |
+
sizeStr = (size / 1000 / 1000).toFixed(0) + "M";
|
| 47 |
+
} else {
|
| 48 |
+
sizeStr = (size / 1000 / 1000 / 1000).toFixed(0) + "B";
|
| 49 |
+
}
|
| 50 |
+
return <div>{sizeStr}</div>;
|
| 51 |
+
};
|
| 52 |
+
|
| 53 |
+
const modelBodyTemplate = (rowData) => {
|
| 54 |
+
// bold
|
| 55 |
+
return <div style={{ fontWeight: 'bold' }}>{rowData.model}</div>;
|
| 56 |
+
};
|
| 57 |
+
|
| 58 |
return (
|
| 59 |
+
<DataTable value={table} header={<>AI Models</>} sortField="average" removableSort filters={filters} filterDisplay="menu" scrollable scrollHeight="500px">
|
| 60 |
<Column field="rank" body={rankBodyTemplate} />
|
| 61 |
+
<Column field="provider" header="Provider" filter filterElement={providerRowFilterTemplate} showFilterMatchModes={false} style={{ minWidth: '5rem' }} />
|
| 62 |
+
<Column field="model" header="Model" filter showFilterMatchModes={false} style={{ minWidth: '15rem' }} body={modelBodyTemplate} />
|
| 63 |
+
<Column field="type" header="Type" style={{ minWidth: '10rem' }} />
|
| 64 |
+
<Column field="size" header="Size" sortable body={sizeBodyTemplate} style={{ minWidth: '5rem' }} />
|
| 65 |
+
<Column field="average" header="Average" sortable style={{ minWidth: '5rem' }} />
|
| 66 |
+
<Column field="translation_chrf" header="Translation" sortable style={{ minWidth: '5rem' }} />
|
| 67 |
+
<Column field="classification_accuracy" header="Classification" sortable style={{ minWidth: '5rem' }} />
|
| 68 |
+
<Column field="language_modeling_chrf" header="Language Modeling" sortable style={{ minWidth: '5rem' }} />
|
| 69 |
</DataTable>
|
| 70 |
);
|
| 71 |
};
|