Spaces:
Runtime error
Runtime error
File size: 6,270 Bytes
2b55a7c cb56114 2b55a7c 5f757f8 2b55a7c 5f757f8 2b55a7c 70bcfa7 2b55a7c 189280e 81b9155 189280e 2b55a7c 3cb08e2 2b55a7c 70bcfa7 81b9155 70bcfa7 81b9155 2b55a7c 3cb08e2 81b9155 70bcfa7 81b9155 2b55a7c 3cb08e2 81b9155 2b55a7c 81b9155 2b55a7c 5f757f8 2b55a7c 5f757f8 2b55a7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ROUGE metric from Google Research github repo. """
# The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt
import absl # Here to have a nice missing dependency error message early on
import datasets
import nltk # Here to have a nice missing dependency error message early on
import numpy # Here to have a nice missing dependency error message early on
import six # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import evaluate
_CITATION = """\
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
"""
_DESCRIPTION = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
_KWARGS_DESCRIPTION = """
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
`"rougeL"`: Longest common subsequence based scoring.
`"rougeLsum"`: rougeLsum splits text using `"\n"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (f1),
rouge2: rouge_2 (f1),
rougeL: rouge_l (f1),
rougeLsum: rouge_lsum (f1)
Examples:
>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(results)
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
"""
class Tokenizer:
"""Helper class to wrap a callable into a class with a `tokenize` method as used by rouge-score."""
def __init__(self, tokenizer_func):
self.tokenizer_func = tokenizer_func
def tokenize(self, text):
return self.tokenizer_func(text)
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Rouge(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(datasets.Value("string", id="sequence")),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"],
reference_urls=[
"https://en.wikipedia.org/wiki/ROUGE_(metric)",
"https://github.com/google-research/google-research/tree/master/rouge",
],
)
def _compute(
self, predictions, references, rouge_types=None, use_aggregator=True, use_stemmer=False, tokenizer=None
):
if rouge_types is None:
rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
multi_ref = isinstance(references[0], list)
if tokenizer is not None:
tokenizer = Tokenizer(tokenizer)
scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer, tokenizer=tokenizer)
if use_aggregator:
aggregator = scoring.BootstrapAggregator()
else:
scores = []
for ref, pred in zip(references, predictions):
if multi_ref:
score = scorer.score_multi(ref, pred)
else:
score = scorer.score(ref, pred)
if use_aggregator:
aggregator.add_scores(score)
else:
scores.append(score)
if use_aggregator:
result = aggregator.aggregate()
for key in result:
result[key] = result[key].mid.fmeasure
else:
result = {}
for key in scores[0]:
result[key] = list(score[key].fmeasure for score in scores)
return result
|