Spaces:
Running
Running
Update Space (evaluate main: 828c6327)
Browse files
README.md
CHANGED
@@ -1,12 +1,135 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: ROUGE
|
3 |
+
emoji: 🤗
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
tags:
|
11 |
+
- evaluate
|
12 |
+
- metric
|
13 |
---
|
14 |
|
15 |
+
# Metric Card for ROUGE
|
16 |
+
|
17 |
+
## Metric Description
|
18 |
+
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
|
19 |
+
|
20 |
+
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
|
21 |
+
|
22 |
+
This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge)
|
23 |
+
|
24 |
+
## How to Use
|
25 |
+
At minimum, this metric takes as input a list of predictions and a list of references:
|
26 |
+
```python
|
27 |
+
>>> rouge = evaluate.load('rouge')
|
28 |
+
>>> predictions = ["hello there", "general kenobi"]
|
29 |
+
>>> references = ["hello there", "general kenobi"]
|
30 |
+
>>> results = rouge.compute(predictions=predictions,
|
31 |
+
... references=references)
|
32 |
+
>>> print(list(results.keys()))
|
33 |
+
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
|
34 |
+
>>> print(results["rouge1"])
|
35 |
+
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
|
36 |
+
>>> print(results["rouge1"].mid.fmeasure)
|
37 |
+
1.0
|
38 |
+
```
|
39 |
+
|
40 |
+
### Inputs
|
41 |
+
- **predictions** (`list`): list of predictions to score. Each prediction
|
42 |
+
should be a string with tokens separated by spaces.
|
43 |
+
- **references** (`list`): list of reference for each prediction. Each
|
44 |
+
reference should be a string with tokens separated by spaces.
|
45 |
+
- **rouge_types** (`list`): A list of rouge types to calculate. Defaults to `['rouge1', 'rouge2', 'rougeL', 'rougeLsum']`.
|
46 |
+
- Valid rouge types:
|
47 |
+
- `"rouge1"`: unigram (1-gram) based scoring
|
48 |
+
- `"rouge2"`: bigram (2-gram) based scoring
|
49 |
+
- `"rougeL"`: Longest common subsequence based scoring.
|
50 |
+
- `"rougeLSum"`: splits text using `"\n"`
|
51 |
+
- See [here](https://github.com/huggingface/datasets/issues/617) for more information
|
52 |
+
- **use_aggregator** (`boolean`): If True, returns aggregates. Defaults to `True`.
|
53 |
+
- **use_stemmer** (`boolean`): If `True`, uses Porter stemmer to strip word suffixes. Defaults to `False`.
|
54 |
+
|
55 |
+
### Output Values
|
56 |
+
The output is a dictionary with one entry for each rouge type in the input list `rouge_types`. If `use_aggregator=False`, each dictionary entry is a list of Score objects, with one score for each sentence. Each Score object includes the `precision`, `recall`, and `fmeasure`. E.g. if `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=False`, the output is:
|
57 |
+
|
58 |
+
```python
|
59 |
+
{'rouge1': [Score(precision=1.0, recall=0.5, fmeasure=0.6666666666666666), Score(precision=1.0, recall=1.0, fmeasure=1.0)], 'rouge2': [Score(precision=0.0, recall=0.0, fmeasure=0.0), Score(precision=1.0, recall=1.0, fmeasure=1.0)]}
|
60 |
+
```
|
61 |
+
|
62 |
+
If `rouge_types=['rouge1', 'rouge2']` and `use_aggregator=True`, the output is of the following format:
|
63 |
+
```python
|
64 |
+
{'rouge1': AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)), 'rouge2': AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))}
|
65 |
+
```
|
66 |
+
|
67 |
+
The `precision`, `recall`, and `fmeasure` values all have a range of 0 to 1.
|
68 |
+
|
69 |
+
|
70 |
+
#### Values from Popular Papers
|
71 |
+
|
72 |
+
|
73 |
+
### Examples
|
74 |
+
An example without aggregation:
|
75 |
+
```python
|
76 |
+
>>> rouge = evaluate.load('rouge')
|
77 |
+
>>> predictions = ["hello goodbye", "ankh morpork"]
|
78 |
+
>>> references = ["goodbye", "general kenobi"]
|
79 |
+
>>> results = rouge.compute(predictions=predictions,
|
80 |
+
... references=references)
|
81 |
+
>>> print(list(results.keys()))
|
82 |
+
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
|
83 |
+
>>> print(results["rouge1"])
|
84 |
+
[Score(precision=0.5, recall=0.5, fmeasure=0.5), Score(precision=0.0, recall=0.0, fmeasure=0.0)]
|
85 |
+
```
|
86 |
+
|
87 |
+
The same example, but with aggregation:
|
88 |
+
```python
|
89 |
+
>>> rouge = evaluate.load('rouge')
|
90 |
+
>>> predictions = ["hello goodbye", "ankh morpork"]
|
91 |
+
>>> references = ["goodbye", "general kenobi"]
|
92 |
+
>>> results = rouge.compute(predictions=predictions,
|
93 |
+
... references=references,
|
94 |
+
... use_aggregator=True)
|
95 |
+
>>> print(list(results.keys()))
|
96 |
+
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
|
97 |
+
>>> print(results["rouge1"])
|
98 |
+
AggregateScore(low=Score(precision=0.0, recall=0.0, fmeasure=0.0), mid=Score(precision=0.25, recall=0.25, fmeasure=0.25), high=Score(precision=0.5, recall=0.5, fmeasure=0.5))
|
99 |
+
```
|
100 |
+
|
101 |
+
The same example, but only calculating `rouge_1`:
|
102 |
+
```python
|
103 |
+
>>> rouge = evaluate.load('rouge')
|
104 |
+
>>> predictions = ["hello goodbye", "ankh morpork"]
|
105 |
+
>>> references = ["goodbye", "general kenobi"]
|
106 |
+
>>> results = rouge.compute(predictions=predictions,
|
107 |
+
... references=references,
|
108 |
+
... rouge_types=['rouge_1'],
|
109 |
+
... use_aggregator=True)
|
110 |
+
>>> print(list(results.keys()))
|
111 |
+
['rouge1']
|
112 |
+
>>> print(results["rouge1"])
|
113 |
+
AggregateScore(low=Score(precision=0.0, recall=0.0, fmeasure=0.0), mid=Score(precision=0.25, recall=0.25, fmeasure=0.25), high=Score(precision=0.5, recall=0.5, fmeasure=0.5))
|
114 |
+
```
|
115 |
+
|
116 |
+
## Limitations and Bias
|
117 |
+
See [Schluter (2017)](https://aclanthology.org/E17-2007/) for an in-depth discussion of many of ROUGE's limits.
|
118 |
+
|
119 |
+
## Citation
|
120 |
+
```bibtex
|
121 |
+
@inproceedings{lin-2004-rouge,
|
122 |
+
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
|
123 |
+
author = "Lin, Chin-Yew",
|
124 |
+
booktitle = "Text Summarization Branches Out",
|
125 |
+
month = jul,
|
126 |
+
year = "2004",
|
127 |
+
address = "Barcelona, Spain",
|
128 |
+
publisher = "Association for Computational Linguistics",
|
129 |
+
url = "https://www.aclweb.org/anthology/W04-1013",
|
130 |
+
pages = "74--81",
|
131 |
+
}
|
132 |
+
```
|
133 |
+
|
134 |
+
## Further References
|
135 |
+
- This metrics is a wrapper around the [Google Research reimplementation of ROUGE](https://github.com/google-research/google-research/tree/master/rouge)
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("rouge")
|
6 |
+
launch_gradio_widget(module)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: fix github to release
|
2 |
+
git+https://github.com/huggingface/evaluate.git@b6e6ed7f3e6844b297bff1b43a1b4be0709b9671
|
3 |
+
datasets~=2.0
|
4 |
+
absl-py
|
5 |
+
nltk
|
6 |
+
rouge_score
|
rouge.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Evaluate Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
""" ROUGE metric from Google Research github repo. """
|
15 |
+
|
16 |
+
# The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt
|
17 |
+
import absl # Here to have a nice missing dependency error message early on
|
18 |
+
import datasets
|
19 |
+
import nltk # Here to have a nice missing dependency error message early on
|
20 |
+
import numpy # Here to have a nice missing dependency error message early on
|
21 |
+
import six # Here to have a nice missing dependency error message early on
|
22 |
+
from rouge_score import rouge_scorer, scoring
|
23 |
+
|
24 |
+
import evaluate
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
@inproceedings{lin-2004-rouge,
|
29 |
+
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
|
30 |
+
author = "Lin, Chin-Yew",
|
31 |
+
booktitle = "Text Summarization Branches Out",
|
32 |
+
month = jul,
|
33 |
+
year = "2004",
|
34 |
+
address = "Barcelona, Spain",
|
35 |
+
publisher = "Association for Computational Linguistics",
|
36 |
+
url = "https://www.aclweb.org/anthology/W04-1013",
|
37 |
+
pages = "74--81",
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
_DESCRIPTION = """\
|
42 |
+
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
|
43 |
+
evaluating automatic summarization and machine translation software in natural language processing.
|
44 |
+
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
|
45 |
+
|
46 |
+
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
|
47 |
+
|
48 |
+
This metrics is a wrapper around Google Research reimplementation of ROUGE:
|
49 |
+
https://github.com/google-research/google-research/tree/master/rouge
|
50 |
+
"""
|
51 |
+
|
52 |
+
_KWARGS_DESCRIPTION = """
|
53 |
+
Calculates average rouge scores for a list of hypotheses and references
|
54 |
+
Args:
|
55 |
+
predictions: list of predictions to score. Each prediction
|
56 |
+
should be a string with tokens separated by spaces.
|
57 |
+
references: list of reference for each prediction. Each
|
58 |
+
reference should be a string with tokens separated by spaces.
|
59 |
+
rouge_types: A list of rouge types to calculate.
|
60 |
+
Valid names:
|
61 |
+
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
|
62 |
+
`"rougeL"`: Longest common subsequence based scoring.
|
63 |
+
`"rougeLSum"`: rougeLsum splits text using `"\n"`.
|
64 |
+
See details in https://github.com/huggingface/datasets/issues/617
|
65 |
+
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
|
66 |
+
use_aggregator: Return aggregates if this is set to True
|
67 |
+
Returns:
|
68 |
+
rouge1: rouge_1 (precision, recall, f1),
|
69 |
+
rouge2: rouge_2 (precision, recall, f1),
|
70 |
+
rougeL: rouge_l (precision, recall, f1),
|
71 |
+
rougeLsum: rouge_lsum (precision, recall, f1)
|
72 |
+
Examples:
|
73 |
+
|
74 |
+
>>> rouge = evaluate.load('rouge')
|
75 |
+
>>> predictions = ["hello there", "general kenobi"]
|
76 |
+
>>> references = ["hello there", "general kenobi"]
|
77 |
+
>>> results = rouge.compute(predictions=predictions, references=references)
|
78 |
+
>>> print(list(results.keys()))
|
79 |
+
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
|
80 |
+
>>> print(results["rouge1"])
|
81 |
+
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
|
82 |
+
>>> print(results["rouge1"].mid.fmeasure)
|
83 |
+
1.0
|
84 |
+
"""
|
85 |
+
|
86 |
+
|
87 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
88 |
+
class Rouge(evaluate.EvaluationModule):
|
89 |
+
def _info(self):
|
90 |
+
return evaluate.EvaluationModuleInfo(
|
91 |
+
description=_DESCRIPTION,
|
92 |
+
citation=_CITATION,
|
93 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
94 |
+
features=datasets.Features(
|
95 |
+
{
|
96 |
+
"predictions": datasets.Value("string", id="sequence"),
|
97 |
+
"references": datasets.Value("string", id="sequence"),
|
98 |
+
}
|
99 |
+
),
|
100 |
+
codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"],
|
101 |
+
reference_urls=[
|
102 |
+
"https://en.wikipedia.org/wiki/ROUGE_(metric)",
|
103 |
+
"https://github.com/google-research/google-research/tree/master/rouge",
|
104 |
+
],
|
105 |
+
)
|
106 |
+
|
107 |
+
def _compute(self, predictions, references, rouge_types=None, use_aggregator=True, use_stemmer=False):
|
108 |
+
if rouge_types is None:
|
109 |
+
rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
|
110 |
+
|
111 |
+
scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer)
|
112 |
+
if use_aggregator:
|
113 |
+
aggregator = scoring.BootstrapAggregator()
|
114 |
+
else:
|
115 |
+
scores = []
|
116 |
+
|
117 |
+
for ref, pred in zip(references, predictions):
|
118 |
+
score = scorer.score(ref, pred)
|
119 |
+
if use_aggregator:
|
120 |
+
aggregator.add_scores(score)
|
121 |
+
else:
|
122 |
+
scores.append(score)
|
123 |
+
|
124 |
+
if use_aggregator:
|
125 |
+
result = aggregator.aggregate()
|
126 |
+
else:
|
127 |
+
result = {}
|
128 |
+
for key in scores[0]:
|
129 |
+
result[key] = list(score[key] for score in scores)
|
130 |
+
|
131 |
+
return result
|