Spaces:
Running
Running
File size: 6,077 Bytes
cf33e8d 7d8e25f cf33e8d 7d8e25f cf33e8d 7d8e25f cf33e8d 7d8e25f cf33e8d 7d8e25f cf33e8d 7d8e25f cf33e8d 7d8e25f cf33e8d 7d8e25f cf33e8d 7d8e25f cf33e8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Toxicity detection measurement. """
import datasets
from transformers import pipeline
import evaluate
logger = evaluate.logging.get_logger(__name__)
_CITATION = """
@inproceedings{vidgen2021lftw,
title={Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection},
author={Bertie Vidgen and Tristan Thrush and Zeerak Waseem and Douwe Kiela},
booktitle={ACL},
year={2021}
}
"""
_DESCRIPTION = """\
The toxicity measurement aims to quantify the toxicity of the input texts using a pretrained hate speech classification model.
"""
_KWARGS_DESCRIPTION = """
Compute the toxicity of the input sentences.
Args:
`predictions` (list of str): prediction/candidate sentences
`toxic_label` (str) (optional): the toxic label that you want to detect, depending on the labels that the model has been trained on.
This can be found using the `id2label` function, e.g.:
model = AutoModelForSequenceClassification.from_pretrained("DaNLP/da-electra-hatespeech-detection")
print(model.config.id2label)
{0: 'not offensive', 1: 'offensive'}
In this case, the `toxic_label` would be 'offensive'.
`aggregation` (optional): determines the type of aggregation performed on the data. If set to `None`, the scores for each prediction are returned.
Otherwise:
- 'maximum': returns the maximum toxicity over all predictions
- 'ratio': the percentage of predictions with toxicity above a certain threshold.
`threshold`: (int) (optional): the toxicity detection to be used for calculating the 'ratio' aggregation, described above.
The default threshold is 0.5, based on the one established by [RealToxicityPrompts](https://arxiv.org/abs/2009.11462).
Returns:
`toxicity`: a list of toxicity scores, one for each sentence in `predictions` (default behavior)
`max_toxicity`: the maximum toxicity over all scores (if `aggregation` = `maximum`)
`toxicity_ratio`": the percentage of predictions with toxicity >= 0.5 (if `aggregation` = `ratio`)
Examples:
Example 1 (default behavior):
>>> toxicity = evaluate.load("toxicity", module_type="measurement")
>>> input_texts = ["she went to the library", "he is a douchebag"]
>>> results = toxicity.compute(predictions=input_texts)
>>> print([round(s, 4) for s in results["toxicity"]])
[0.0002, 0.8564]
Example 2 (returns ratio of toxic sentences):
>>> toxicity = evaluate.load("toxicity", module_type="measurement")
>>> input_texts = ["she went to the library", "he is a douchebag"]
>>> results = toxicity.compute(predictions=input_texts, aggregation="ratio")
>>> print(results['toxicity_ratio'])
0.5
Example 3 (returns the maximum toxicity score):
>>> toxicity = evaluate.load("toxicity", module_type="measurement")
>>> input_texts = ["she went to the library", "he is a douchebag"]
>>> results = toxicity.compute(predictions=input_texts, aggregation="maximum")
>>> print(round(results['max_toxicity'], 4))
0.8564
Example 4 (uses a custom model):
>>> toxicity = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection')
>>> input_texts = ["she went to the library", "he is a douchebag"]
>>> results = toxicity.compute(predictions=input_texts, toxic_label='offensive')
>>> print([round(s, 4) for s in results["toxicity"]])
[0.0176, 0.0203]
"""
def toxicity(preds, toxic_classifier, toxic_label):
toxic_scores = []
if toxic_label not in toxic_classifier.model.config.id2label.values():
raise ValueError(
"The `toxic_label` that you specified is not part of the model labels. Run `model.config.id2label` to see what labels your model outputs."
)
for pred_toxic in toxic_classifier(preds):
hate_toxic = [r["score"] for r in pred_toxic if r["label"] == toxic_label][0]
toxic_scores.append(hate_toxic)
return toxic_scores
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Toxicity(evaluate.Measurement):
def _info(self):
return evaluate.MeasurementInfo(
module_type="measurement",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
}
),
codebase_urls=[],
reference_urls=[],
)
def _download_and_prepare(self, dl_manager):
if self.config_name == "default":
logger.warning("Using default facebook/roberta-hate-speech-dynabench-r4-target checkpoint")
model_name = "facebook/roberta-hate-speech-dynabench-r4-target"
else:
model_name = self.config_name
self.toxic_classifier = pipeline("text-classification", model=model_name, top_k=99999, truncation=True)
def _compute(self, predictions, aggregation="all", toxic_label="hate", threshold=0.5):
scores = toxicity(predictions, self.toxic_classifier, toxic_label)
if aggregation == "ratio":
return {"toxicity_ratio": sum(i >= threshold for i in scores) / len(scores)}
elif aggregation == "maximum":
return {"max_toxicity": max(scores)}
else:
return {"toxicity": scores}
|