File size: 101,557 Bytes
2c41ede
0ef1e7a
 
679c889
29c25d0
a4d55a1
0ef1e7a
 
4e15520
 
 
 
 
 
 
 
 
0ef1e7a
4e15520
 
a4d55a1
3e0fc3d
4e15520
 
 
2de2f9d
305e44a
 
0ef1e7a
 
 
 
 
2de2f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
b4e520b
8501045
 
b4e520b
 
 
8501045
b4e520b
0ef1e7a
b4e520b
8501045
 
b4e520b
 
 
8501045
b4e520b
8501045
 
 
 
 
 
 
 
b4e520b
 
 
8501045
 
 
 
 
 
b4e520b
 
8501045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddb4e0
8501045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
8501045
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
5ddb4e0
b4e520b
 
470297d
 
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1ccf49
8501045
 
676cf64
b4e520b
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
 
 
 
676cf64
 
 
b4e520b
 
 
676cf64
b4e520b
 
676cf64
 
 
 
 
 
 
 
b4e520b
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
5ddb4e0
b4e520b
 
 
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
676cf64
 
 
5ddb4e0
b4e520b
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
5ddb4e0
b4e520b
 
 
 
 
 
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddb4e0
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
0ef1e7a
 
 
0d70940
0ef1e7a
a17b4f2
 
 
 
 
 
9e5eb14
90cc645
 
244a6a9
 
 
 
 
 
 
 
 
 
90cc645
9e5eb14
 
0d70940
9e5eb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd2486
 
 
9e5eb14
 
1fd2486
 
9e5eb14
 
 
 
 
 
 
 
 
 
14b8387
 
1fd2486
9e5eb14
 
14b8387
 
1fd2486
9e5eb14
 
 
 
 
 
 
 
 
14b8387
 
1fd2486
9e5eb14
 
14b8387
 
1fd2486
9e5eb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd2486
 
 
9e5eb14
 
14b8387
 
9e5eb14
 
 
14b8387
 
9e5eb14
 
 
1fd2486
9e5eb14
 
 
 
4e15520
9e5eb14
 
 
 
 
 
a4d55a1
9e5eb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e15520
9e5eb14
 
 
 
 
 
4b68d3d
9e5eb14
 
4b68d3d
9e5eb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11269b9
 
4e15520
11269b9
f87b461
 
 
 
 
 
 
 
 
 
 
 
11269b9
f87b461
59f8ee9
 
f87b461
 
 
 
9e5eb14
 
 
 
59f8ee9
 
 
 
 
9e5eb14
 
 
 
 
59f8ee9
4e15520
 
59f8ee9
 
9e5eb14
 
 
 
 
4e15520
 
 
 
 
9e5eb14
 
 
 
 
59f8ee9
0ef1e7a
9e5eb14
f87b461
59f8ee9
b4e520b
f87b461
9e5eb14
f87b461
 
 
 
 
 
 
 
9e5eb14
f87b461
 
 
 
 
 
 
11269b9
f87b461
 
 
 
 
9e5eb14
f87b461
9e5eb14
f87b461
 
9e5eb14
f87b461
 
 
 
 
 
 
 
 
9e5eb14
 
 
 
 
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e5eb14
 
 
470297d
 
b4e520b
470297d
 
 
 
 
0ef1e7a
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
470297d
b4e520b
 
470297d
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cf1c2
 
4e15520
21cf1c2
528719f
a4d55a1
528719f
 
 
 
b4794a2
528719f
4e15520
 
528719f
 
 
7745d43
4e15520
528719f
 
 
9ddc325
4e15520
528719f
305e44a
528719f
9ddc325
0ef1e7a
b4e520b
4e15520
 
b4794a2
528719f
4e15520
 
a4d55a1
528719f
4e15520
b4794a2
528719f
 
 
 
 
 
 
 
b4794a2
 
4e15520
528719f
 
 
 
 
 
b4794a2
 
4e15520
 
 
 
a4d55a1
4e15520
 
 
 
528719f
4e15520
528719f
4e15520
528719f
4e15520
528719f
4e15520
528719f
4e15520
 
528719f
 
 
 
 
 
b4794a2
 
4e15520
 
 
b4794a2
4e15520
 
528719f
4e15520
 
 
 
 
b4794a2
4e15520
 
 
1a4e64f
528719f
 
470297d
4e15520
0ef1e7a
470297d
 
 
5ddb4e0
470297d
 
 
 
 
0ef1e7a
 
470297d
0ef1e7a
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddb4e0
470297d
 
 
 
b4e520b
 
 
470297d
 
 
 
 
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
 
470297d
 
 
b4e520b
470297d
b4e520b
 
470297d
b4e520b
 
470297d
 
b4e520b
470297d
 
 
 
 
4e15520
 
5ddb4e0
4e15520
 
 
a4d55a1
4e15520
 
 
a4d55a1
4e15520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d55a1
4e15520
 
a4d55a1
4e15520
 
 
 
 
 
470297d
4e15520
 
 
 
470297d
4e15520
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
 
4e15520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d55a1
4e15520
 
 
 
470297d
4e15520
 
 
 
470297d
 
 
4e15520
 
 
 
1fd2c2a
4e15520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd2c2a
4e15520
0e8e44e
 
 
 
 
f7be255
 
4e15520
 
 
 
 
 
f7be255
 
8f98474
4e15520
f7be255
 
 
 
 
 
4e15520
 
 
 
 
f7be255
 
 
 
 
4e15520
f7be255
0e8e44e
f7be255
 
4e15520
 
 
 
 
 
f9ef722
 
4e15520
6f25d52
 
 
 
 
 
 
 
 
 
f9ef722
2de2f9d
 
 
 
 
 
 
 
 
 
4e15520
f9ef722
f7be255
 
ddd6290
f7be255
 
4e15520
f7be255
4e15520
f7be255
 
 
 
 
 
 
0e8e44e
ab96cef
4e15520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5fb6cc
4e15520
16aab35
ba2aa6b
9e5eb14
 
31c1299
 
 
 
9e5eb14
16aab35
bbd8dfa
 
 
 
 
 
16aab35
0d70940
 
 
bbd8dfa
 
16aab35
9e5eb14
bbd8dfa
 
a92fc12
 
 
 
 
 
 
 
 
bbd8dfa
 
 
 
10491fa
a92fc12
 
10491fa
a92fc12
 
10491fa
a92fc12
 
 
10491fa
 
a92fc12
 
 
 
 
bbd8dfa
a92fc12
 
10491fa
a92fc12
 
 
10491fa
 
a92fc12
 
 
 
 
bbd8dfa
a92fc12
 
10491fa
 
 
a92fc12
10491fa
 
 
a92fc12
 
 
 
31c1299
 
a92fc12
10491fa
34259a4
a92fc12
10491fa
 
 
 
a92fc12
34259a4
 
 
 
 
 
a92fc12
 
 
 
 
 
 
 
 
 
10491fa
 
a92fc12
10491fa
a92fc12
10491fa
 
a92fc12
 
10491fa
a92fc12
 
10491fa
a92fc12
 
 
 
 
10491fa
 
a92fc12
 
10491fa
a92fc12
 
 
 
2660823
 
 
 
 
 
 
 
10491fa
a92fc12
2660823
 
 
 
a92fc12
2660823
 
 
a92fc12
 
2660823
 
 
 
 
 
 
 
34259a4
 
2660823
 
 
 
a92fc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd8dfa
 
 
 
 
31c1299
bbd8dfa
 
 
 
 
 
 
 
 
 
 
 
 
 
ba2aa6b
bbd8dfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd8dfa
 
f87b461
 
 
 
bbd8dfa
 
f87b461
 
 
 
bbd8dfa
 
f87b461
 
 
 
bbd8dfa
 
f87b461
 
 
 
bbd8dfa
31c1299
f87b461
bbd8dfa
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd8dfa
 
f87b461
 
 
bbd8dfa
f87b461
 
7d130f8
 
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd8dfa
528719f
bbd8dfa
 
 
31c1299
bbd8dfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16aab35
9e5eb14
f87b461
bbd8dfa
f87b461
 
 
 
 
 
 
bbd8dfa
f87b461
16aab35
f87b461
 
 
 
 
 
9e5eb14
f87b461
 
 
 
 
 
7d130f8
bbd8dfa
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd8dfa
 
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd8dfa
2660823
 
 
 
 
bbd8dfa
2660823
 
 
31c1299
2660823
bbd8dfa
165cfc3
166f736
 
 
 
 
bbd8dfa
 
 
 
34259a4
 
 
2660823
166f736
 
 
 
 
 
bbd8dfa
2660823
 
 
 
 
bbd8dfa
 
34259a4
2660823
bbd8dfa
 
 
 
 
2660823
 
 
 
34259a4
 
 
bbd8dfa
 
2660823
bbd8dfa
 
 
 
34259a4
2660823
34259a4
bbd8dfa
34259a4
2660823
 
 
34259a4
bbd8dfa
 
 
 
166f736
 
 
 
 
 
 
 
 
34259a4
bbd8dfa
 
 
 
 
 
 
 
 
ba2aa6b
7d130f8
 
bbd8dfa
 
 
7d130f8
9e5eb14
f87b461
bbd8dfa
f87b461
bbd8dfa
f87b461
 
 
 
 
 
 
 
 
 
bbd8dfa
 
f87b461
 
da76b43
f87b461
 
 
 
 
da76b43
bbd8dfa
 
 
f87b461
 
 
 
 
 
7d130f8
f87b461
bbd8dfa
f87b461
 
 
 
 
 
 
 
 
 
 
 
bbd8dfa
 
f87b461
 
 
 
 
 
 
 
bbd8dfa
 
 
 
f87b461
bbd8dfa
 
 
f87b461
bbd8dfa
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd8dfa
f87b461
 
 
 
 
 
 
 
bbd8dfa
 
 
 
f87b461
5ae32ee
 
 
 
f87b461
2a468d6
f87b461
 
2a468d6
f87b461
 
 
 
2a468d6
 
f87b461
2a468d6
 
 
f87b461
bbd8dfa
 
 
f87b461
 
 
 
bbd8dfa
f87b461
 
 
 
 
 
bbd8dfa
 
0d70940
306b3c6
 
f87b461
306b3c6
f87b461
 
 
 
 
306b3c6
f87b461
 
 
2a468d6
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306b3c6
f87b461
2a468d6
 
 
 
 
f87b461
 
 
2a468d6
f87b461
 
 
 
 
2a468d6
 
f87b461
 
306b3c6
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306b3c6
17ddc73
306b3c6
 
bab4e95
306b3c6
 
 
bab4e95
306b3c6
 
bab4e95
da76b43
bab4e95
306b3c6
 
bab4e95
da76b43
306b3c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e5eb14
16aab35
9e5eb14
306b3c6
4e15520
 
9e5eb14
16aab35
306b3c6
16aab35
306b3c6
 
ba2aa6b
306b3c6
 
 
e5fb6cc
bbd8dfa
306b3c6
 
 
 
31c1299
306b3c6
 
 
0d70940
306b3c6
bab4e95
fc530c9
fa01404
f87b461
 
fc530c9
f87b461
 
 
 
 
 
 
8bd1dbb
fc530c9
8bd1dbb
 
 
fc530c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87b461
fc530c9
f87b461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback
import math

@dataclass
class UserPreferences:

    """使用者偏好設定的資料結構"""
    living_space: str  # "apartment", "house_small", "house_large"
    yard_access: str  # "no_yard", "shared_yard", "private_yard" 
    exercise_time: int  # minutes per day
    exercise_type: str  # "light_walks", "moderate_activity", "active_training" 
    grooming_commitment: str  # "low", "medium", "high"
    experience_level: str  # "beginner", "intermediate", "advanced"
    time_availability: str  # "limited", "moderate", "flexible" 
    has_children: bool
    children_age: str  # "toddler", "school_age", "teenager"
    noise_tolerance: str  # "low", "medium", "high"
    space_for_play: bool
    other_pets: bool
    climate: str  # "cold", "moderate", "hot"
    health_sensitivity: str = "medium"
    barking_acceptance: str = None
    size_preference: str = "no_preference"  # "no_preference", "small", "medium", "large", "giant"
    training_commitment: str = "medium"  # "low", "medium", "high" - 訓練投入程度
    living_environment: str = "ground_floor"  # "ground_floor", "with_elevator", "walk_up" - 居住環境細節

    def __post_init__(self):
        if self.barking_acceptance is None:
            self.barking_acceptance = self.noise_tolerance

def apply_size_filter(breed_score: float, user_preference: str, breed_size: str) -> float:
    """
    強過濾機制,基於用戶的體型偏好過濾品種
    
    Parameters:
        breed_score (float): 原始品種評分
        user_preference (str): 用戶偏好的體型
        breed_size (str): 品種的實際體型
    
    Returns:
        float: 過濾後的評分,如果體型不符合會返回 0
    """
    if user_preference == "no_preference":
        return breed_score
    
    # 標準化 size 字串以進行比較
    breed_size = breed_size.lower().strip()
    user_preference = user_preference.lower().strip()
    
    # 特殊處理 "varies" 的情況
    if breed_size == "varies":
        return breed_score * 0.5  # 給予一個折扣係數,因為不確定性
        
    # 如果用戶有明確體型偏好但品種不符合,返回 0
    if user_preference != breed_size:
        return 0
        
    return breed_score        


@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
    """計算品種額外加分"""
    bonus = 0.0
    temperament = breed_info.get('Temperament', '').lower()
    
    # 1. 壽命加分(最高0.05)
    try:
        lifespan = breed_info.get('Lifespan', '10-12 years')
        years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
        longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
        bonus += longevity_bonus
    except:
        pass

    # 2. 性格特徵加分(最高0.15)
    positive_traits = {
        'friendly': 0.05,           
        'gentle': 0.05,
        'patient': 0.05,
        'intelligent': 0.04,
        'adaptable': 0.04,
        'affectionate': 0.04,
        'easy-going': 0.03,         
        'calm': 0.03                
    }
    
    negative_traits = {
        'aggressive': -0.08,        
        'stubborn': -0.06,
        'dominant': -0.06,
        'aloof': -0.04,
        'nervous': -0.05,           
        'protective': -0.04         
    }
    
    personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
    personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
    bonus += max(-0.15, min(0.15, personality_score))

    # 3. 適應性加分(最高0.1)
    adaptability_bonus = 0.0
    if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
        adaptability_bonus += 0.05
    if 'adaptable' in temperament or 'versatile' in temperament:
        adaptability_bonus += 0.05
    bonus += min(0.1, adaptability_bonus)

    # 4. 家庭相容性(最高0.1)
    if user_prefs.has_children:
        family_traits = {
            'good with children': 0.06,  
            'patient': 0.05,
            'gentle': 0.05,
            'tolerant': 0.04,           
            'playful': 0.03             
        }
        unfriendly_traits = {
            'aggressive': -0.08,        
            'nervous': -0.07,
            'protective': -0.06,
            'territorial': -0.05        
        }
        
        # 年齡評估
        age_adjustments = {
            'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
            'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
            'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
        }
        
        adj = age_adjustments.get(user_prefs.children_age, 
                                {'bonus_mult': 1.0, 'penalty_mult': 1.0})
        
        family_bonus = sum(value for trait, value in family_traits.items() 
                          if trait in temperament) * adj['bonus_mult']
        family_penalty = sum(value for trait, value in unfriendly_traits.items() 
                           if trait in temperament) * adj['penalty_mult']
        
        bonus += min(0.15, max(-0.2, family_bonus + family_penalty))

    
    # 5. 專門技能加分(最高0.1)
    skill_bonus = 0.0
    special_abilities = {
        'working': 0.03,
        'herding': 0.03,
        'hunting': 0.03,
        'tracking': 0.03,
        'agility': 0.02
    }
    for ability, value in special_abilities.items():
        if ability in temperament.lower():
            skill_bonus += value
    bonus += min(0.1, skill_bonus)


    # 6. 適應性評估 
    adaptability_bonus = 0.0
    if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
        adaptability_bonus += 0.08  # 小型犬更適合公寓
    
    # 環境適應性評估
    if 'adaptable' in temperament or 'versatile' in temperament:
        if user_prefs.living_space == "apartment":
            adaptability_bonus += 0.10  # 適應性在公寓環境更重要
        else:
            adaptability_bonus += 0.05  # 其他環境仍有加分
            
    # 氣候適應性
    description = breed_info.get('Description', '').lower()
    climate = user_prefs.climate
    if climate == 'hot':
        if 'heat tolerant' in description or 'warm climate' in description:
            adaptability_bonus += 0.08
        elif 'thick coat' in description or 'cold climate' in description:
            adaptability_bonus -= 0.10
    elif climate == 'cold':
        if 'thick coat' in description or 'cold climate' in description:
            adaptability_bonus += 0.08
        elif 'heat tolerant' in description or 'short coat' in description:
            adaptability_bonus -= 0.10
            
    bonus += min(0.15, adaptability_bonus)

    return min(0.5, max(-0.25, bonus))
    

@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
    """
    計算額外的評估因素,結合品種特性與使用者需求的全面評估系統
    
    1. 多功能性評估 - 品種的多樣化能力
    2. 訓練性評估 - 學習和服從能力
    3. 能量水平評估 - 活力和運動需求
    4. 美容需求評估 - 護理和維護需求
    5. 社交需求評估 - 與人互動的需求程度
    6. 氣候適應性 - 對環境的適應能力
    7. 運動類型匹配 - 與使用者運動習慣的契合度
    8. 生活方式適配 - 與使用者日常生活的匹配度
    """
    factors = {
        'versatility': 0.0,        # 多功能性
        'trainability': 0.0,       # 可訓練度
        'energy_level': 0.0,       # 能量水平
        'grooming_needs': 0.0,     # 美容需求
        'social_needs': 0.0,       # 社交需求
        'weather_adaptability': 0.0,# 氣候適應性
        'exercise_match': 0.0,     # 運動匹配度
        'lifestyle_fit': 0.0       # 生活方式適配度
    }
    
    temperament = breed_info.get('Temperament', '').lower()
    description = breed_info.get('Description', '').lower()
    size = breed_info.get('Size', 'Medium')
    
    # 1. 多功能性評估 - 加強品種用途評估
    versatile_traits = {
        'intelligent': 0.25,
        'adaptable': 0.25,
        'trainable': 0.20,
        'athletic': 0.15,
        'versatile': 0.15
    }
    
    working_roles = {
        'working': 0.20,
        'herding': 0.15,
        'hunting': 0.15,
        'sporting': 0.15,
        'companion': 0.10
    }
    
    # 計算特質分數
    trait_score = sum(value for trait, value in versatile_traits.items() 
                     if trait in temperament)
    
    # 計算角色分數
    role_score = sum(value for role, value in working_roles.items() 
                    if role in description)
    
    # 根據使用者需求調整多功能性評分
    purpose_traits = {
        'light_walks': ['calm', 'gentle', 'easy-going'],
        'moderate_activity': ['adaptable', 'balanced', 'versatile'],
        'active_training': ['intelligent', 'trainable', 'working']
    }
    
    if user_prefs.exercise_type in purpose_traits:
        matching_traits = sum(1 for trait in purpose_traits[user_prefs.exercise_type] 
                            if trait in temperament)
        trait_score += matching_traits * 0.15
    
    factors['versatility'] = min(1.0, trait_score + role_score)
    
    # 2. 訓練性評估 
    trainable_traits = {
        'intelligent': 0.3,
        'eager to please': 0.3,
        'trainable': 0.2,
        'quick learner': 0.2,
        'obedient': 0.2
    }
    
    base_trainability = sum(value for trait, value in trainable_traits.items() 
                          if trait in temperament)
    
    # 根據使用者經驗調整訓練性評分
    experience_multipliers = {
        'beginner': 1.2,    # 新手更需要容易訓練的狗
        'intermediate': 1.0,
        'advanced': 0.8     # 專家能處理較難訓練的狗
    }
    
    factors['trainability'] = min(1.0, base_trainability * 
                                experience_multipliers.get(user_prefs.experience_level, 1.0))
    
    # 3. 能量水平評估 
    exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
    energy_levels = {
        'VERY HIGH': {
            'score': 1.0,
            'min_exercise': 120,
            'ideal_exercise': 150
        },
        'HIGH': {
            'score': 0.8,
            'min_exercise': 90,
            'ideal_exercise': 120
        },
        'MODERATE': {
            'score': 0.6,
            'min_exercise': 60,
            'ideal_exercise': 90
        },
        'LOW': {
            'score': 0.4,
            'min_exercise': 30,
            'ideal_exercise': 60
        }
    }
    
    breed_energy = energy_levels.get(exercise_needs, energy_levels['MODERATE'])
    
    # 計算運動時間匹配度
    if user_prefs.exercise_time >= breed_energy['ideal_exercise']:
        energy_score = breed_energy['score']
    else:
        # 如果運動時間不足,按比例降低分數
        deficit_ratio = max(0.4, user_prefs.exercise_time / breed_energy['ideal_exercise'])
        energy_score = breed_energy['score'] * deficit_ratio
    
    factors['energy_level'] = energy_score
    
    # 4. 美容需求評估 
    grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
    grooming_levels = {
        'HIGH': 1.0,
        'MODERATE': 0.6,
        'LOW': 0.3
    }
    
    # 特殊毛髮類型評估
    coat_adjustments = 0
    if 'long coat' in description:
        coat_adjustments += 0.2
    if 'double coat' in description:
        coat_adjustments += 0.15
    if 'curly' in description:
        coat_adjustments += 0.15
        
    # 根據使用者承諾度調整
    commitment_multipliers = {
        'low': 1.5,     # 低承諾度時加重美容需求的影響
        'medium': 1.0,
        'high': 0.8     # 高承諾度時降低美容需求的影響
    }
    
    base_grooming = grooming_levels.get(grooming_needs, 0.6) + coat_adjustments
    factors['grooming_needs'] = min(1.0, base_grooming * 
                                  commitment_multipliers.get(user_prefs.grooming_commitment, 1.0))
    
    # 5. 社交需求評估 
    social_traits = {
        'friendly': 0.25,
        'social': 0.25,
        'affectionate': 0.20,
        'people-oriented': 0.20
    }
    
    antisocial_traits = {
        'independent': -0.20,
        'aloof': -0.20,
        'reserved': -0.15
    }
    
    social_score = sum(value for trait, value in social_traits.items() 
                      if trait in temperament)
    antisocial_score = sum(value for trait, value in antisocial_traits.items() 
                          if trait in temperament)
    
    # 家庭情況調整
    if user_prefs.has_children:
        child_friendly_bonus = 0.2 if 'good with children' in temperament else 0
        social_score += child_friendly_bonus
    
    factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
    
    # 6. 氣候適應性評估 - 更細緻的環境適應評估
    climate_traits = {
        'cold': {
            'positive': ['thick coat', 'winter', 'cold climate'],
            'negative': ['short coat', 'heat sensitive']
        },
        'hot': {
            'positive': ['short coat', 'heat tolerant', 'warm climate'],
            'negative': ['thick coat', 'cold climate']
        },
        'moderate': {
            'positive': ['adaptable', 'all climate'],
            'negative': []
        }
    }
    
    climate_score = 0.4  # 基礎分數
    if user_prefs.climate in climate_traits:
        # 正面特質加分
        climate_score += sum(0.2 for term in climate_traits[user_prefs.climate]['positive'] 
                           if term in description)
        # 負面特質減分
        climate_score -= sum(0.2 for term in climate_traits[user_prefs.climate]['negative'] 
                           if term in description)
    
    factors['weather_adaptability'] = min(1.0, max(0.0, climate_score))
    
    # 7. 運動類型匹配評估
    exercise_type_traits = {
        'light_walks': ['calm', 'gentle'],
        'moderate_activity': ['adaptable', 'balanced'],
        'active_training': ['athletic', 'energetic']
    }
    
    if user_prefs.exercise_type in exercise_type_traits:
        match_score = sum(0.25 for trait in exercise_type_traits[user_prefs.exercise_type] 
                         if trait in temperament)
        factors['exercise_match'] = min(1.0, match_score + 0.5)  # 基礎分0.5
    
    # 8. 生活方式適配評估
    lifestyle_score = 0.5  # 基礎分數
    
    # 空間適配
    if user_prefs.living_space == 'apartment':
        if size == 'Small':
            lifestyle_score += 0.2
        elif size == 'Large':
            lifestyle_score -= 0.2
    elif user_prefs.living_space == 'house_large':
        if size in ['Large', 'Giant']:
            lifestyle_score += 0.2
    
    # 時間可用性適配
    time_availability_bonus = {
        'limited': -0.1,
        'moderate': 0,
        'flexible': 0.1
    }
    lifestyle_score += time_availability_bonus.get(user_prefs.time_availability, 0)
    
    factors['lifestyle_fit'] = min(1.0, max(0.0, lifestyle_score))
    
    return factors


def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
    """計算品種與使用者條件的相容性分數"""
    try:
        print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
        print(f"Breed info keys: {breed_info.keys()}")
        
        if 'Size' not in breed_info:
            print("Missing Size information")
            raise KeyError("Size information missing")

        if user_prefs.size_preference != "no_preference":
            if breed_info['Size'].lower() != user_prefs.size_preference.lower():
                return {
                    'space': 0,
                    'exercise': 0,
                    'grooming': 0,
                    'experience': 0,
                    'health': 0,
                    'noise': 0,
                    'overall': 0,
                    'adaptability_bonus': 0
                }

        def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
            """
            1. 動態的基礎分數矩陣
            2. 強化空間品質評估
            3. 增加極端情況處理
            4. 考慮不同空間組合的協同效應
            """
            def get_base_score():
                # 基礎分數矩陣 - 更極端的分數分配
                base_matrix = {
                    "Small": {
                        "apartment": {
                            "no_yard": 0.85,      # 小型犬在公寓仍然適合
                            "shared_yard": 0.90,   # 共享院子提供額外活動空間
                            "private_yard": 0.95   # 私人院子最理想
                        },
                        "house_small": {
                            "no_yard": 0.80,
                            "shared_yard": 0.85,
                            "private_yard": 0.90
                        },
                        "house_large": {
                            "no_yard": 0.75,
                            "shared_yard": 0.80,
                            "private_yard": 0.85
                        }
                    },
                    "Medium": {
                        "apartment": {
                            "no_yard": 0.75,      
                            "shared_yard": 0.85,
                            "private_yard": 0.90
                        },
                        "house_small": {
                            "no_yard": 0.80,
                            "shared_yard": 0.90,
                            "private_yard": 0.90
                        },
                        "house_large": {
                            "no_yard": 0.85,
                            "shared_yard": 0.90,
                            "private_yard": 0.95
                        }
                    },
                    "Large": {
                        "apartment": {
                            "no_yard": 0.70,      
                            "shared_yard": 0.80,
                            "private_yard": 0.85
                        },
                        "house_small": {
                            "no_yard": 0.75,
                            "shared_yard": 0.85,
                            "private_yard": 0.90
                        },
                        "house_large": {
                            "no_yard": 0.85,
                            "shared_yard": 0.90,
                            "private_yard": 1.0
                        }
                    },
                    "Giant": {
                        "apartment": {
                            "no_yard": 0.65,      
                            "shared_yard": 0.75,
                            "private_yard": 0.80
                        },
                        "house_small": {
                            "no_yard": 0.70,
                            "shared_yard": 0.80,
                            "private_yard": 0.85
                        },
                        "house_large": {
                            "no_yard": 0.80,
                            "shared_yard": 0.90,
                            "private_yard": 1.0
                        }
                    }
                }
                
                yard_type = "private_yard" if has_yard else "no_yard"
                return base_matrix.get(size, base_matrix["Medium"])[living_space][yard_type]
        
            def calculate_exercise_adjustment():
                # 運動需求對空間評分的影響
                exercise_impact = {
                    "Very High": {
                        "apartment": -0.10,    
                        "house_small": -0.05,
                        "house_large": 0
                    },
                    "High": {
                        "apartment": -0.08,
                        "house_small": -0.05,
                        "house_large": 0
                    },
                    "Moderate": {
                        "apartment": -0.5,
                        "house_small": -0.02,
                        "house_large": 0
                    },
                    "Low": {
                        "apartment": 0.10,     
                        "house_small": 0.05,
                        "house_large": 0
                    }
                }
                
                return exercise_impact.get(exercise_needs, exercise_impact["Moderate"])[living_space]
        
            def calculate_yard_bonus():
                # 院子效益評估更加細緻
                if not has_yard:
                    return 0
                    
                yard_benefits = {
                    "Giant": {
                        "Very High": 0.25,
                        "High": 0.20,
                        "Moderate": 0.15,
                        "Low": 0.10
                    },
                    "Large": {
                        "Very High": 0.20,
                        "High": 0.15,
                        "Moderate": 0.10,
                        "Low": 0.05
                    },
                    "Medium": {
                        "Very High": 0.15,
                        "High": 0.10,
                        "Moderate": 0.08,
                        "Low": 0.05
                    },
                    "Small": {
                        "Very High": 0.10,
                        "High": 0.08,
                        "Moderate": 0.05,
                        "Low": 0.03
                    }
                }
                
                size_benefits = yard_benefits.get(size, yard_benefits["Medium"])
                return size_benefits.get(exercise_needs, size_benefits["Moderate"])
        
            def apply_extreme_case_adjustments(score):
                # 處理極端情況
                if size == "Giant" and living_space == "apartment":
                    return score * 0.85  
                
                if size == "Large" and living_space == "apartment" and exercise_needs == "Very High":
                    return score * 0.85  
                    
                if size == "Small" and living_space == "house_large" and exercise_needs == "Low":
                    return score * 0.9  # 低運動需求的小型犬在大房子可能過於寬敞
                    
                return score
        
            # 計算最終分數
            base_score = get_base_score()
            exercise_adj = calculate_exercise_adjustment()
            yard_bonus = calculate_yard_bonus()
            
            # 整合所有評分因素
            initial_score = base_score + exercise_adj + yard_bonus
            
            # 應用極端情況調整
            final_score = apply_extreme_case_adjustments(initial_score)
            
            # 確保分數在有效範圍內,但允許更極端的結果
            return max(0.05, min(1.0, final_score))


        def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
            """
            計算品種運動需求與使用者運動條件的匹配度。此函數特別著重:
            1. 不同品種的運動耐受度差異
            2. 運動時間與類型的匹配度
            3. 極端運動量的嚴格限制
            
            Parameters:
            breed_needs: 品種的運動需求等級
            exercise_time: 使用者計劃的運動時間(分鐘)
            exercise_type: 運動類型(輕度/中度/高度)
            
            Returns:
            float: 0.1到1.0之間的匹配分數
            """
            # 定義每個運動需求等級的具體參數
            exercise_levels = {
                'VERY HIGH': {
                    'min': 120,          # 最低需求
                    'ideal': 150,        # 理想運動量
                    'max': 180,          # 最大建議量
                    'type_weights': {    # 不同運動類型的權重
                        'active_training': 1.0,
                        'moderate_activity': 0.6,
                        'light_walks': 0.3
                    }
                },
                'HIGH': {
                    'min': 90,
                    'ideal': 120,
                    'max': 150,
                    'type_weights': {
                        'active_training': 0.9,
                        'moderate_activity': 0.8,
                        'light_walks': 0.4
                    }
                },
                'MODERATE': {
                    'min': 45,
                    'ideal': 60,
                    'max': 90,
                    'type_weights': {
                        'active_training': 0.7,
                        'moderate_activity': 1.0,
                        'light_walks': 0.8
                    }
                },
                'LOW': {
                    'min': 15,
                    'ideal': 30,
                    'max': 45,
                    'type_weights': {
                        'active_training': 0.5,
                        'moderate_activity': 0.8,
                        'light_walks': 1.0
                    }
                }
            }
        
            # 獲取品種的運動參數
            breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
            
            # 計算時間匹配度
            def calculate_time_score():
                """計算運動時間的匹配度,特別處理過度運動的情況"""
                if exercise_time < breed_level['min']:
                    # 運動不足的嚴格懲罰
                    deficit_ratio = exercise_time / breed_level['min']
                    return max(0.1, deficit_ratio * 0.4)
                
                elif exercise_time <= breed_level['ideal']:
                    # 理想範圍內的漸進提升
                    progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
                    return 0.6 + (progress * 0.4)
                
                elif exercise_time <= breed_level['max']:
                    # 理想到最大範圍的平緩下降
                    excess_ratio = (exercise_time - breed_level['ideal']) / (breed_level['max'] - breed_level['ideal'])
                    return 1.0 - (excess_ratio * 0.2)
                
                else:
                    # 過度運動的顯著懲罰
                    excess = (exercise_time - breed_level['max']) / breed_level['max']
                    # 低運動需求品種的過度運動懲罰更嚴重
                    penalty_factor = 1.5 if breed_needs.upper() == 'LOW' else 1.0
                    return max(0.1, 0.8 - (excess * 0.5 * penalty_factor))
        
            # 計算運動類型匹配度
            def calculate_type_score():
                """評估運動類型的適合度,考慮品種特性"""
                base_type_score = breed_level['type_weights'].get(exercise_type, 0.5)
                
                # 特殊情況處理
                if breed_needs.upper() == 'LOW' and exercise_type == 'active_training':
                    # 低運動需求品種不適合高強度運動
                    base_type_score *= 0.5
                elif breed_needs.upper() == 'VERY HIGH' and exercise_type == 'light_walks':
                    # 高運動需求品種需要更多強度
                    base_type_score *= 0.6
                    
                return base_type_score
        
            # 計算最終分數
            time_score = calculate_time_score()
            type_score = calculate_type_score()
            
            # 根據運動需求等級調整權重
            if breed_needs.upper() == 'LOW':
                # 低運動需求品種更重視運動類型的合適性
                final_score = (time_score * 0.6) + (type_score * 0.4)
            elif breed_needs.upper() == 'VERY HIGH':
                # 高運動需求品種更重視運動時間的充足性
                final_score = (time_score * 0.7) + (type_score * 0.3)
            else:
                final_score = (time_score * 0.65) + (type_score * 0.35)
        
            # 極端情況的最終調整
            if breed_needs.upper() == 'LOW' and exercise_time > breed_level['max'] * 2:
                # 低運動需求品種的過度運動顯著降分
                final_score *= 0.6
            elif breed_needs.upper() == 'VERY HIGH' and exercise_time < breed_level['min'] * 0.5:
                # 高運動需求品種運動嚴重不足降分
                final_score *= 0.5
        
            return max(0.1, min(1.0, final_score))


        def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
            """
            計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
            這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
            """
            # 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
            base_scores = {
                "High": {
                    "low": 0.20,      # 高需求對低承諾極不合適,顯著降低初始分數
                    "medium": 0.65,   # 中等承諾仍有挑戰
                    "high": 1.0       # 高承諾最適合
                },
                "Moderate": {
                    "low": 0.45,      # 中等需求對低承諾有困難
                    "medium": 0.85,   # 較好的匹配
                    "high": 0.95      # 高承諾會有餘力
                },
                "Low": {
                    "low": 0.90,      # 低需求對低承諾很合適
                    "medium": 0.85,   # 略微降低以反映可能過度投入
                    "high": 0.80      # 可能造成資源浪費
                }
            }
        
            # 取得基礎分數
            base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
        
            # 根據品種大小調整美容工作量
            size_adjustments = {
                "Giant": {
                    "low": -0.35,     # 大型犬的美容工作量顯著增加
                    "medium": -0.20,
                    "high": -0.10
                },
                "Large": {
                    "low": -0.25,
                    "medium": -0.15,
                    "high": -0.05
                },
                "Medium": {
                    "low": -0.15,
                    "medium": -0.10,
                    "high": 0
                },
                "Small": {
                    "low": -0.10,
                    "medium": -0.05,
                    "high": 0
                }
            }
        
            # 應用體型調整
            size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
            current_score = base_score + size_adjustment
        
            # 特殊毛髮類型的額外調整
            def get_coat_adjustment(breed_description: str, commitment: str) -> float:
                """
                評估特殊毛髮類型所需的額外維護工作
                """
                adjustments = 0
                
                # 長毛品種需要更多維護
                if 'long coat' in breed_description.lower():
                    coat_penalties = {
                        'low': -0.20,
                        'medium': -0.15,
                        'high': -0.05
                    }
                    adjustments += coat_penalties[commitment]
                    
                # 雙層毛的品種掉毛量更大
                if 'double coat' in breed_description.lower():
                    double_coat_penalties = {
                        'low': -0.15,
                        'medium': -0.10,
                        'high': -0.05
                    }
                    adjustments += double_coat_penalties[commitment]
                    
                # 捲毛品種需要定期專業修剪
                if 'curly' in breed_description.lower():
                    curly_penalties = {
                        'low': -0.15,
                        'medium': -0.10,
                        'high': -0.05
                    }
                    adjustments += curly_penalties[commitment]
                    
                return adjustments
        
            # 季節性考量
            def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
                """
                評估季節性掉毛對美容需求的影響
                """
                if 'seasonal shedding' in breed_description.lower():
                    seasonal_penalties = {
                        'low': -0.15,
                        'medium': -0.10,
                        'high': -0.05
                    }
                    return seasonal_penalties[commitment]
                return 0
        
            # 專業美容需求評估
            def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
                """
                評估需要專業美容服務的影響
                """
                if 'professional grooming' in breed_description.lower():
                    grooming_penalties = {
                        'low': -0.20,
                        'medium': -0.15,
                        'high': -0.05
                    }
                    return grooming_penalties[commitment]
                return 0
        
            # 應用所有額外調整
            # 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整
            coat_adjustment = get_coat_adjustment("", user_commitment)
            seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
            professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
            
            final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
        
            # 確保分數在有意義的範圍內,但允許更大的差異
            return max(0.1, min(1.0, final_score))


        def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
            """
            計算使用者經驗與品種需求的匹配分數,更平衡的經驗等級影響
            
            改進重點:
            1. 提高初學者的基礎分數
            2. 縮小經驗等級間的差距
            3. 保持適度的區分度
            """
            # 基礎分數矩陣 - 更合理的分數分配
            base_scores = {
                "High": {
                    "beginner": 0.55,      # 提高起始分,讓新手也有機會
                    "intermediate": 0.80,   # 中級玩家有不錯的勝任能力
                    "advanced": 0.95        # 資深者幾乎完全勝任
                },
                "Moderate": {
                    "beginner": 0.65,      # 適中難度對新手更友善
                    "intermediate": 0.85,   # 中級玩家相當適合
                    "advanced": 0.90        # 資深者完全勝任
                },
                "Low": {
                    "beginner": 0.85,      # 新手友善品種維持高分
                    "intermediate": 0.90,   # 中級玩家幾乎完全勝任
                    "advanced": 0.90        # 資深者完全勝任
                }
            }
            
            # 取得基礎分數
            score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
            
            # 性格評估的權重也需要調整
            temperament_lower = temperament.lower()
            temperament_adjustments = 0.0
            
            # 根據經驗等級設定不同的特徵評估標準,降低懲罰程度
            if user_experience == "beginner":
                difficult_traits = {
                    'stubborn': -0.15,        # 降低懲罰程度
                    'independent': -0.12,
                    'dominant': -0.12,
                    'strong-willed': -0.10,
                    'protective': -0.10,
                    'aloof': -0.08,
                    'energetic': -0.08,
                    'aggressive': -0.20        # 保持較高懲罰,因為安全考慮
                }
                
                easy_traits = {
                    'gentle': 0.08,           # 提高獎勵以平衡
                    'friendly': 0.08,
                    'eager to please': 0.10,
                    'patient': 0.08,
                    'adaptable': 0.08,
                    'calm': 0.08
                }
                
                # 計算特徵調整
                for trait, penalty in difficult_traits.items():
                    if trait in temperament_lower:
                        temperament_adjustments += penalty
                
                for trait, bonus in easy_traits.items():
                    if trait in temperament_lower:
                        temperament_adjustments += bonus
                        
                # 品種類型特殊評估,降低懲罰程度
                if 'terrier' in temperament_lower:
                    temperament_adjustments -= 0.10  # 降低懲罰
                elif 'working' in temperament_lower:
                    temperament_adjustments -= 0.12
                elif 'guard' in temperament_lower:
                    temperament_adjustments -= 0.12
                    
            # 中級和高級玩家的調整保持不變...
            elif user_experience == "intermediate":
                moderate_traits = {
                    'stubborn': -0.08,
                    'independent': -0.05,
                    'intelligent': 0.10,
                    'athletic': 0.08,
                    'versatile': 0.08,
                    'protective': -0.05
                }
                
                for trait, adjustment in moderate_traits.items():
                    if trait in temperament_lower:
                        temperament_adjustments += adjustment
                        
            else:  # advanced
                advanced_traits = {
                    'stubborn': 0.05,
                    'independent': 0.05,
                    'intelligent': 0.10,
                    'protective': 0.05,
                    'strong-willed': 0.05
                }
                
                for trait, bonus in advanced_traits.items():
                    if trait in temperament_lower:
                        temperament_adjustments += bonus
            
            # 確保最終分數範圍合理
            final_score = max(0.15, min(1.0, score + temperament_adjustments))
            
            return final_score

        def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
            """
            計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
  
            1. 根據使用者的健康敏感度調整分數
            2. 更嚴格的健康問題評估
            3. 考慮多重健康問題的累積效應
            4. 加入遺傳疾病的特別考量
            """
            if breed_name not in breed_health_info:
                return 0.5
        
            health_notes = breed_health_info[breed_name]['health_notes'].lower()
            
            # 嚴重健康問題 - 加重扣分
            severe_conditions = {
                'hip dysplasia': -0.25,           # 髖關節發育不良,影響生活品質
                'heart disease': -0.25,           # 心臟疾病,需要長期治療
                'progressive retinal atrophy': -0.20,  # 進行性視網膜萎縮,導致失明
                'bloat': -0.22,                   # 胃扭轉,致命風險
                'epilepsy': -0.20,                # 癲癇,需要長期藥物控制
                'degenerative myelopathy': -0.20,  # 脊髓退化,影響行動能力
                'von willebrand disease': -0.18    # 血液凝固障礙
            }
            
            # 中度健康問題 - 適度扣分
            moderate_conditions = {
                'allergies': -0.12,               # 過敏問題,需要持續關注
                'eye problems': -0.15,            # 眼睛問題,可能需要手術
                'joint problems': -0.15,          # 關節問題,影響運動能力
                'hypothyroidism': -0.12,          # 甲狀腺功能低下,需要藥物治療
                'ear infections': -0.10,          # 耳道感染,需要定期清理
                'skin issues': -0.12              # 皮膚問題,需要特殊護理
            }
            
            # 輕微健康問題 - 輕微扣分
            minor_conditions = {
                'dental issues': -0.08,           # 牙齒問題,需要定期護理
                'weight gain tendency': -0.08,    # 易胖體質,需要控制飲食
                'minor allergies': -0.06,         # 輕微過敏,可控制
                'seasonal allergies': -0.06       # 季節性過敏
            }
        
            # 計算基礎健康分數
            health_score = 1.0
            
            # 健康問題累積效應計算
            condition_counts = {
                'severe': 0,
                'moderate': 0,
                'minor': 0
            }
            
            # 計算各等級健康問題的數量和影響
            for condition, penalty in severe_conditions.items():
                if condition in health_notes:
                    health_score += penalty
                    condition_counts['severe'] += 1
                    
            for condition, penalty in moderate_conditions.items():
                if condition in health_notes:
                    health_score += penalty
                    condition_counts['moderate'] += 1
                    
            for condition, penalty in minor_conditions.items():
                if condition in health_notes:
                    health_score += penalty
                    condition_counts['minor'] += 1
            
            # 多重問題的額外懲罰(累積效應)
            if condition_counts['severe'] > 1:
                health_score *= (0.85 ** (condition_counts['severe'] - 1))
            if condition_counts['moderate'] > 2:
                health_score *= (0.90 ** (condition_counts['moderate'] - 2))
            
            # 根據使用者健康敏感度調整分數
            sensitivity_multipliers = {
                'low': 1.1,      # 較不在意健康問題
                'medium': 1.0,   # 標準評估
                'high': 0.85     # 非常注重健康問題
            }
            
            health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0)
        
            # 壽命影響評估
            try:
                lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
                years = float(lifespan.split('-')[0])
                if years < 8:
                    health_score *= 0.85   # 短壽命顯著降低分數
                elif years < 10:
                    health_score *= 0.92   # 較短壽命輕微降低分數
                elif years > 13:
                    health_score *= 1.1    # 長壽命適度加分
            except:
                pass
        
            # 特殊健康優勢
            if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
                health_score *= 1.15
            elif 'robust health' in health_notes or 'few health issues' in health_notes:
                health_score *= 1.1
        
            # 確保分數在合理範圍內,但允許更大的分數差異
            return max(0.1, min(1.0, health_score))
            

        def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
            """
            計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估,很多人棄養就是因為叫聲
            """
            if breed_name not in breed_noise_info:
                return 0.5
        
            noise_info = breed_noise_info[breed_name]
            noise_level = noise_info['noise_level'].lower()
            noise_notes = noise_info['noise_notes'].lower()
        
            # 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
            base_scores = {
                'low': {
                    'low': 1.0,       # 安靜的狗對低容忍完美匹配
                    'medium': 0.95,   # 安靜的狗對一般容忍很好
                    'high': 0.90      # 安靜的狗對高容忍當然可以
                },
                'medium': {
                    'low': 0.60,      # 一般吠叫對低容忍較困難
                    'medium': 0.90,   # 一般吠叫對一般容忍可接受
                    'high': 0.95      # 一般吠叫對高容忍很好
                },
                'high': {
                    'low': 0.25,      # 愛叫的狗對低容忍極不適合
                    'medium': 0.65,   # 愛叫的狗對一般容忍有挑戰
                    'high': 0.90      # 愛叫的狗對高容忍可以接受
                },
                'varies': {
                    'low': 0.50,      # 不確定的情況對低容忍風險較大
                    'medium': 0.75,   # 不確定的情況對一般容忍可嘗試
                    'high': 0.85      # 不確定的情況對高容忍問題較小
                }
            }
        
            # 取得基礎分數
            base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
        
            # 吠叫原因評估,根據環境調整懲罰程度
            barking_penalties = {
                'separation anxiety': {
                    'apartment': -0.30,    # 在公寓對鄰居影響更大
                    'house_small': -0.25,
                    'house_large': -0.20
                },
                'excessive barking': {
                    'apartment': -0.25,
                    'house_small': -0.20,
                    'house_large': -0.15
                },
                'territorial': {
                    'apartment': -0.20,    # 在公寓更容易被觸發
                    'house_small': -0.15,
                    'house_large': -0.10
                },
                'alert barking': {
                    'apartment': -0.15,    # 公寓環境刺激較多
                    'house_small': -0.10,
                    'house_large': -0.08
                },
                'attention seeking': {
                    'apartment': -0.15,
                    'house_small': -0.12,
                    'house_large': -0.10
                }
            }
        
            # 計算環境相關的吠叫懲罰
            living_space = user_prefs.living_space
            barking_penalty = 0
            for trigger, penalties in barking_penalties.items():
                if trigger in noise_notes:
                    barking_penalty += penalties.get(living_space, -0.15)
        
            # 特殊情況評估
            special_adjustments = 0
            if user_prefs.has_children:
                # 孩童年齡相關調整
                child_age_adjustments = {
                    'toddler': {
                        'high': -0.20,     # 幼童對吵鬧更敏感
                        'medium': -0.15,
                        'low': -0.05
                    },
                    'school_age': {
                        'high': -0.15,
                        'medium': -0.10,
                        'low': -0.05
                    },
                    'teenager': {
                        'high': -0.10,
                        'medium': -0.05,
                        'low': -0.02
                    }
                }
                
                # 根據孩童年齡和噪音等級調整
                age_adj = child_age_adjustments.get(user_prefs.children_age, 
                                                  child_age_adjustments['school_age'])
                special_adjustments += age_adj.get(noise_level, -0.10)
        
            # 訓練性補償評估
            trainability_bonus = 0
            if 'responds well to training' in noise_notes:
                trainability_bonus = 0.12
            elif 'can be trained' in noise_notes:
                trainability_bonus = 0.08
            elif 'difficult to train' in noise_notes:
                trainability_bonus = 0.02
        
            # 夜間吠叫特別考量
            if 'night barking' in noise_notes or 'howls' in noise_notes:
                if user_prefs.living_space == 'apartment':
                    special_adjustments -= 0.15
                elif user_prefs.living_space == 'house_small':
                    special_adjustments -= 0.10
                else:
                    special_adjustments -= 0.05
        
            # 計算最終分數,確保更大的分數範圍
            final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
            return max(0.1, min(1.0, final_score))
            

        # 1. 計算基礎分數
        print("\n=== 開始計算品種相容性分數 ===")
        print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
        print(f"品種信息: {breed_info}")
        print(f"使用者偏好: {vars(user_prefs)}")

        # 計算所有基礎分數並整合到字典中
        scores = {
            'space': calculate_space_score(
                breed_info['Size'], 
                user_prefs.living_space,
                user_prefs.yard_access != 'no_yard',
                breed_info.get('Exercise Needs', 'Moderate')
            ),
            'exercise': calculate_exercise_score(
                breed_info.get('Exercise Needs', 'Moderate'),
                user_prefs.exercise_time,
                user_prefs.exercise_type
            ),
            'grooming': calculate_grooming_score(
                breed_info.get('Grooming Needs', 'Moderate'),
                user_prefs.grooming_commitment.lower(),
                breed_info['Size']
            ),
            'experience': calculate_experience_score(
                breed_info.get('Care Level', 'Moderate'),
                user_prefs.experience_level,
                breed_info.get('Temperament', '')
            ),
            'health': calculate_health_score(
                breed_info.get('Breed', ''),
                user_prefs
            ),
            'noise': calculate_noise_score(
                breed_info.get('Breed', ''),
                user_prefs
            )
        }

        final_score = calculate_breed_compatibility_score(
            scores=scores,
            user_prefs=user_prefs,
            breed_info=breed_info
        )

        # 計算環境適應性加成
        adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)


        # 處理極端情況(新增)
        if user_prefs.living_space == "apartment" and breed_info['Size'] in ["Giant", "Large"]:
            final_score *= 0.7  # 大型犬在公寓環境下的顯著懲罰
        
        if (breed_info.get('Exercise Needs') == "Very High" and 
            user_prefs.living_space == "apartment" and 
            user_prefs.exercise_time < 90):
            final_score *= 0.75  # 高運動需求但條件不足的懲罰

        # 整合最終分數和加成
        combined_score = (final_score * 0.9) + (adaptability_bonus * 0.1)
        
        # 體型過濾
        filtered_score = apply_size_filter(
            breed_score=combined_score,
            user_preference=user_prefs.size_preference,
            breed_size=breed_info['Size']
        )
        
        final_score = amplify_score_extreme(filtered_score)

        # 更新並返回完整的評分結果
        scores.update({
            'overall': final_score,
            'size': breed_info['Size'],
            'adaptability_bonus': adaptability_bonus
        })

        return scores

    except Exception as e:
        print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
        print(f"錯誤類型: {type(e).__name__}")
        print(f"錯誤訊息: {str(e)}")
        print(f"完整錯誤追蹤:")
        print(traceback.format_exc())
        return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}


def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
    """計算品種與環境的適應性加成"""
    adaptability_score = 0.0
    description = breed_info.get('Description', '').lower()
    temperament = breed_info.get('Temperament', '').lower()
    
    # 環境適應性評估
    if user_prefs.living_space == 'apartment':
        if 'adaptable' in temperament or 'apartment' in description:
            adaptability_score += 0.1
        if breed_info.get('Size') == 'Small':
            adaptability_score += 0.05
    elif user_prefs.living_space == 'house_large':
        if 'active' in temperament or 'energetic' in description:
            adaptability_score += 0.1
            
    # 氣候適應性
    if user_prefs.climate in description or user_prefs.climate in temperament:
        adaptability_score += 0.05
        
    return min(0.2, adaptability_score)
    

def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
    """
    1. 運動類型與時間的精確匹配
    2. 進階使用者的專業需求
    3. 空間利用的實際效果
    4. 條件組合的嚴格評估
    """
    def evaluate_perfect_conditions():
        """
        評估條件匹配度,特別強化:
        1. 運動類型與時間的綜合評估
        2. 專業技能需求評估
        3. 品種特性評估
        """
        perfect_matches = {
            'size_match': 0,
            'exercise_match': 0,
            'experience_match': 0,
            'living_condition_match': 0,
            'breed_trait_match': 0  # 新增品種特性匹配度
        }
        
        # 第一部分:運動需求評估
        def evaluate_exercise_compatibility():
            """
            評估運動需求的匹配度,特別關注:
            1. 時間與強度的合理搭配
            2. 不同品種的運動特性
            3. 運動類型的適配性
            
            這個函數就像是一個體育教練,需要根據每個"運動員"(狗品種)的特點,
            為他們制定合適的訓練計劃。
            """
            exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
            exercise_time = user_prefs.exercise_time
            exercise_type = user_prefs.exercise_type
            temperament = breed_info.get('Temperament', '').lower()
            description = breed_info.get('Description', '').lower()
        
            # 定義更精確的品種運動特性
            breed_exercise_patterns = {
                'sprint_type': {  # 短跑型犬種,如 Whippet, Saluki
                    'identifiers': ['fast', 'speed', 'sprint', 'racing', 'coursing', 'sight hound'],
                    'ideal_exercise': {
                        'active_training': 1.0,     # 完美匹配高強度訓練
                        'moderate_activity': 0.5,    # 持續運動不是最佳選擇
                        'light_walks': 0.3          # 輕度運動效果很差
                    },
                    'time_ranges': {
                        'ideal': (30, 60),          # 最適合的運動時間範圍
                        'acceptable': (20, 90),      # 可以接受的時間範圍
                        'penalty_start': 90         # 開始給予懲罰的時間點
                    },
                    'penalty_rate': 0.8            # 超出範圍時的懲罰係數
                },
                'endurance_type': {  # 耐力型犬種,如 Border Collie
                    'identifiers': ['herding', 'working', 'tireless', 'energetic', 'stamina', 'athletic'],
                    'ideal_exercise': {
                        'active_training': 0.9,     # 高強度訓練很好
                        'moderate_activity': 1.0,    # 持續運動是最佳選擇
                        'light_walks': 0.4          # 輕度運動不足
                    },
                    'time_ranges': {
                        'ideal': (90, 180),         # 需要較長的運動時間
                        'acceptable': (60, 180),
                        'penalty_start': 60         # 運動時間過短會受罰
                    },
                    'penalty_rate': 0.7
                },
                'moderate_type': {  # 一般活動型犬種,如 Labrador
                    'identifiers': ['friendly', 'playful', 'adaptable', 'versatile', 'companion'],
                    'ideal_exercise': {
                        'active_training': 0.8,
                        'moderate_activity': 1.0,
                        'light_walks': 0.6
                    },
                    'time_ranges': {
                        'ideal': (60, 120),
                        'acceptable': (45, 150),
                        'penalty_start': 150
                    },
                    'penalty_rate': 0.6
                }
            }
        
            def determine_breed_type():
                """改進品種運動類型的判斷,更精確識別工作犬"""
                # 優先檢查特殊運動類型的標識符
                for breed_type, pattern in breed_exercise_patterns.items():
                    if any(identifier in temperament or identifier in description 
                          for identifier in pattern['identifiers']):
                        return breed_type
                
                # 改進:根據運動需求和工作犬特徵進行更細緻的判斷
                if (exercise_needs in ['VERY HIGH', 'HIGH'] or
                    any(trait in temperament.lower() for trait in 
                        ['herding', 'working', 'intelligent', 'athletic', 'tireless'])):
                    if user_prefs.experience_level == 'advanced':
                        return 'endurance_type'  # 優先判定為耐力型
                elif exercise_needs == 'LOW':
                    return 'moderate_type'
                
                return 'moderate_type'
        
            def calculate_time_match(pattern):
                """
                計算運動時間的匹配度。
                這就像在判斷運動時間是否符合訓練計劃。
                """
                ideal_min, ideal_max = pattern['time_ranges']['ideal']
                accept_min, accept_max = pattern['time_ranges']['acceptable']
                penalty_start = pattern['time_ranges']['penalty_start']
                
                # 在理想範圍內
                if ideal_min <= exercise_time <= ideal_max:
                    return 1.0
                    
                # 超出可接受範圍的嚴格懲罰
                elif exercise_time < accept_min:
                    deficit = accept_min - exercise_time
                    return max(0.2, 1 - (deficit / accept_min) * 1.2)
                elif exercise_time > accept_max:
                    excess = exercise_time - penalty_start
                    penalty = min(0.8, (excess / penalty_start) * pattern['penalty_rate'])
                    return max(0.2, 1 - penalty)
                    
                # 在可接受範圍但不在理想範圍
                else:
                    if exercise_time < ideal_min:
                        progress = (exercise_time - accept_min) / (ideal_min - accept_min)
                        return 0.6 + (0.4 * progress)
                    else:
                        remaining = (accept_max - exercise_time) / (accept_max - ideal_max)
                        return 0.6 + (0.4 * remaining)
        
            def apply_special_adjustments(time_score, type_score, breed_type, pattern):
                """
                處理特殊情況,確保運動方式真正符合品種需求。
                特別加強:
                1. 短跑型犬種的長時間運動懲罰
                2. 耐力型犬種的獎勵機制
                3. 運動類型匹配的重要性
                """
                # 短跑型品種的特殊處理
                if breed_type == 'sprint_type':
                    if exercise_time > pattern['time_ranges']['penalty_start']:
                        # 加重長時間運動的懲罰
                        penalty_factor = min(0.8, (exercise_time - pattern['time_ranges']['penalty_start']) / 60)
                        time_score *= max(0.3, 1 - penalty_factor)  # 最低降到0.3
                        # 運動類型不適合時的額外懲罰
                        if exercise_type != 'active_training':
                            type_score *= 0.3  # 更嚴重的懲罰
                            
                # 耐力型品種的特殊處理
                elif breed_type == 'endurance_type':
                    if exercise_time < pattern['time_ranges']['penalty_start']:
                        time_score *= 0.5  # 維持運動不足的懲罰
                    elif exercise_time >= 150:  # 新增:高運動量獎勵
                        if exercise_type in ['active_training', 'moderate_activity']:
                            time_bonus = min(0.3, (exercise_time - 150) / 150)
                            time_score = min(1.0, time_score * (1 + time_bonus))
                            type_score = min(1.0, type_score * 1.2)
                    
                    # 運動強度不足的懲罰
                    if exercise_type == 'light_walks':
                        if exercise_time > 90:
                            type_score *= 0.4  # 加重懲罰
                        else:
                            type_score *= 0.5
                            
                return time_score, type_score
        
            # 執行評估流程
            breed_type = determine_breed_type()
            pattern = breed_exercise_patterns[breed_type]
            
            # 計算基礎分數
            time_score = calculate_time_match(pattern)
            type_score = pattern['ideal_exercise'].get(exercise_type, 0.5)
            
            # 應用特殊調整
            time_score, type_score = apply_special_adjustments(time_score, type_score, breed_type, pattern)
            
            # 根據品種類型決定最終權重
            if breed_type == 'sprint_type':
                if exercise_time > pattern['time_ranges']['penalty_start']:
                    # 超時時更重視運動類型的匹配度
                    return (time_score * 0.3) + (type_score * 0.7)
                else:
                    return (time_score * 0.5) + (type_score * 0.5)
            elif breed_type == 'endurance_type':
                if exercise_time < pattern['time_ranges']['penalty_start']:
                    # 時間不足時更重視時間因素
                    return (time_score * 0.7) + (type_score * 0.3)
                else:
                    return (time_score * 0.6) + (type_score * 0.4)
            else:
                return (time_score * 0.5) + (type_score * 0.5)
    
        # 第二部分:專業技能需求評估
        def evaluate_expertise_requirements():
            care_level = breed_info.get('Care Level', 'MODERATE').upper()
            temperament = breed_info.get('Temperament', '').lower()
            
            # 定義專業技能要求
            expertise_requirements = {
                'training_complexity': {
                    'HIGH': {'beginner': 0.3, 'intermediate': 0.7, 'advanced': 1.0},
                    'MODERATE': {'beginner': 0.6, 'intermediate': 0.9, 'advanced': 1.0},
                    'LOW': {'beginner': 0.9, 'intermediate': 0.95, 'advanced': 0.9}
                },
                'special_traits': {
                    'working': 0.2,    # 工作犬需要額外技能
                    'herding': 0.2,    # 牧羊犬需要特殊訓練
                    'intelligent': 0.15,# 高智商犬種需要心智刺激
                    'independent': 0.15,# 獨立性強的需要特殊處理
                    'protective': 0.1   # 護衛犬需要適當訓練
                }
            }
    
            # 基礎分數
            base_score = expertise_requirements['training_complexity'][care_level][user_prefs.experience_level]
    
            # 特殊特徵評估
            trait_penalty = 0
            for trait, penalty in expertise_requirements['special_traits'].items():
                if trait in temperament:
                    if user_prefs.experience_level == 'beginner':
                        trait_penalty += penalty
                    elif user_prefs.experience_level == 'advanced':
                        trait_penalty -= penalty * 0.5  # 專家反而因應對特殊特徵而加分
    
            return max(0.2, min(1.0, base_score - trait_penalty))
    
        # 第三部分:生活環境評估
        # def evaluate_living_conditions():
        #     size = breed_info['Size']
        #     exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
            
        #     # 空間需求矩陣
        #     space_requirements = {
        #         'apartment': {
        #             'Small': 1.0, 'Medium': 0.4, 'Large': 0.2, 'Giant': 0.1
        #         },
        #         'house_small': {
        #             'Small': 0.9, 'Medium': 1.0, 'Large': 0.5, 'Giant': 0.3
        #         },
        #         'house_large': {
        #             'Small': 0.8, 'Medium': 0.9, 'Large': 1.0, 'Giant': 1.0
        #         }
        #     }
            
        #     # 基礎空間分數
        #     space_score = space_requirements.get(user_prefs.living_space, 
        #                                        space_requirements['house_small'])[size]
    
        #     # 活動空間需求調整
        #     if exercise_needs in ['HIGH', 'VERY HIGH']:
        #         if user_prefs.living_space != 'house_large':
        #             space_score *= 0.8
    
        #     # 院子可用性評估
        #     yard_scores = {
        #         'no_yard': 0.7,
        #         'shared_yard': 0.85,
        #         'private_yard': 1.0
        #     }
        #     space_score *= yard_scores.get(user_prefs.yard_access, 0.8)
    
        #     return space_score

        def evaluate_living_conditions() -> float:
            """
            評估生活環境適配性,特別加強:
            1. 降低對大型犬的過度懲罰
            2. 增加品種特性評估
            3. 提升對適應性的重視度
            """
            size = breed_info['Size']
            exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
            temperament = breed_info.get('Temperament', '').lower()
            description = breed_info.get('Description', '').lower()
        
            # 重新定義空間需求矩陣,降低對大型犬的懲罰
            space_requirements = {
                'apartment': {
                    'Small': 1.0,
                    'Medium': 0.7,    # 從0.4提升到0.7
                    'Large': 0.6,     # 從0.2提升到0.6
                    'Giant': 0.5      # 從0.1提升到0.5
                },
                'house_small': {
                    'Small': 0.9,
                    'Medium': 1.0,
                    'Large': 0.8,     # 從0.5提升到0.8
                    'Giant': 0.7      # 從0.3提升到0.7
                },
                'house_large': {
                    'Small': 0.8,
                    'Medium': 0.9,
                    'Large': 1.0,
                    'Giant': 1.0
                }
            }
        
            # 基礎空間分數
            space_score = space_requirements.get(
                user_prefs.living_space,
                space_requirements['house_small']
            )[size]
        
            # 品種適應性評估
            adaptability_bonus = 0
            adaptable_traits = ['adaptable', 'calm', 'quiet', 'gentle', 'laid-back']
            challenging_traits = ['hyperactive', 'restless', 'requires space']
        
            # 計算適應性加分
            if user_prefs.living_space == 'apartment':
                for trait in adaptable_traits:
                    if trait in temperament or trait in description:
                        adaptability_bonus += 0.1
                        
                # 特別處理大型犬的適應性
                if size in ['Large', 'Giant']:
                    apartment_friendly_traits = ['calm', 'gentle', 'quiet']
                    matched_traits = sum(1 for trait in apartment_friendly_traits 
                                       if trait in temperament or trait in description)
                    if matched_traits > 0:
                        adaptability_bonus += 0.15 * matched_traits
        
            # 活動空間需求調整,更寬容的評估
            if exercise_needs in ['HIGH', 'VERY HIGH']:
                if user_prefs.living_space != 'house_large':
                    space_score *= 0.9  # 從0.8提升到0.9,降低懲罰
            
            # 院子可用性評估,提供更合理的獎勵
            yard_scores = {
                'no_yard': 0.85,      # 從0.7提升到0.85
                'shared_yard': 0.92,  # 從0.85提升到0.92
                'private_yard': 1.0
            }
            yard_multiplier = yard_scores.get(user_prefs.yard_access, 0.85)
            
            # 根據體型調整院子重要性
            if size in ['Large', 'Giant']:
                yard_importance = 1.2
            elif size == 'Medium':
                yard_importance = 1.1
            else:
                yard_importance = 1.0
        
            # 計算最終分數
            final_score = space_score * (1 + adaptability_bonus)
            
            # 應用院子影響
            if user_prefs.yard_access != 'no_yard':
                yard_bonus = (yard_multiplier - 1) * yard_importance
                final_score = min(1.0, final_score + yard_bonus)
        
            # 確保分數在合理範圍內,但提供更高的基礎分數
            return max(0.4, min(1.0, final_score))
    
        # 第四部分:品種特性評估
        def evaluate_breed_traits():
            temperament = breed_info.get('Temperament', '').lower()
            description = breed_info.get('Description', '').lower()
            
            trait_scores = []
            
            # 評估性格特徵
            if user_prefs.has_children:
                if 'good with children' in description:
                    trait_scores.append(1.0)
                elif 'patient' in temperament or 'gentle' in temperament:
                    trait_scores.append(0.8)
                else:
                    trait_scores.append(0.5)
    
            # 評估適應性
            adaptability_keywords = ['adaptable', 'versatile', 'flexible']
            if any(keyword in temperament for keyword in adaptability_keywords):
                trait_scores.append(1.0)
            else:
                trait_scores.append(0.7)
    
            return sum(trait_scores) / len(trait_scores) if trait_scores else 0.7
    
        # 計算各項匹配分數
        perfect_matches['exercise_match'] = evaluate_exercise_compatibility()
        perfect_matches['experience_match'] = evaluate_expertise_requirements()
        perfect_matches['living_condition_match'] = evaluate_living_conditions()
        perfect_matches['size_match'] = evaluate_living_conditions()  # 共用生活環境評估
        perfect_matches['breed_trait_match'] = evaluate_breed_traits()
    
        return perfect_matches

    def calculate_weights() -> dict:
        """
        動態計算評分權重,特別關注:
        1. 極端情況的權重調整
        2. 使用者條件的協同效應
        3. 品種特性的影響
        
        Returns:
            dict: 包含各評分項目權重的字典
        """
        # 定義基礎權重 - 提供更合理的起始分配
        base_weights = {
            'space': 0.25,        # 提升空間權重,因為這是最基本的需求
            'exercise': 0.25,     # 運動需求同樣重要
            'experience': 0.20,   # 保持經驗的重要性
            'grooming': 0.10,     # 稍微降低美容需求的權重
            'noise': 0.10,        # 維持噪音評估的權重
            'health': 0.10        # 維持健康評估的權重
        }
    
        def analyze_condition_extremity() -> dict:
            """
            評估使用者條件的極端程度,這影響權重的動態調整。
            根據條件的極端程度返回相應的調整建議。
            """
            extremities = {}
    
            # 運動時間評估 - 更細緻的分級
            if user_prefs.exercise_time <= 30:
                extremities['exercise'] = ('extremely_low', 0.8)
            elif user_prefs.exercise_time <= 60:
                extremities['exercise'] = ('low', 0.6)
            elif user_prefs.exercise_time >= 180:
                extremities['exercise'] = ('extremely_high', 0.8)
            elif user_prefs.exercise_time >= 120:
                extremities['exercise'] = ('high', 0.6)
            else:
                extremities['exercise'] = ('moderate', 0.3)
    
            # 空間限制評估 - 更合理的空間評估
            space_extremity = {
                'apartment': ('restricted', 0.7),    # 從0.9降低到0.7,減少限制
                'house_small': ('moderate', 0.5),
                'house_large': ('spacious', 0.3)
            }
            extremities['space'] = space_extremity.get(user_prefs.living_space, ('moderate', 0.5))
    
            # 經驗水平評估 - 保持原有的評估邏輯
            experience_extremity = {
                'beginner': ('low', 0.7),
                'intermediate': ('moderate', 0.4),
                'advanced': ('high', 0.6)
            }
            extremities['experience'] = experience_extremity.get(user_prefs.experience_level, ('moderate', 0.5))
    
            return extremities
    
        def calculate_weight_adjustments(extremities: dict) -> dict:
            """
            根據極端程度計算權重調整,特別注意條件組合的影響。
            """
            adjustments = {}
            temperament = breed_info.get('Temperament', '').lower()
            is_working_dog = any(trait in temperament 
                               for trait in ['herding', 'working', 'intelligent', 'tireless'])
    
            # 空間權重調整 - 更平衡的調整方式
            if extremities['space'][0] == 'restricted':
                if extremities['exercise'][0] in ['high', 'extremely_high']:
                    adjustments['space'] = 1.5       # 從1.8降低到1.5
                    adjustments['exercise'] = 1.8    # 從2.5降低到1.8
                else:
                    adjustments['space'] = 1.6       # 從2.5降低到1.6
                    adjustments['noise'] = 1.5       # 保持合理的噪音權重
    
            # 運動需求權重調整 - 更合理的運動評估
            if extremities['exercise'][0] in ['extremely_high', 'extremely_low']:
                base_adjustment = 1.8                # 從2.5降低到1.8
                if extremities['exercise'][0] == 'extremely_high':
                    if is_working_dog:
                        base_adjustment = 2.0        # 從3.0降低到2.0
                adjustments['exercise'] = base_adjustment
    
            # 經驗需求權重調整 - 維持原有的評估邏輯
            if extremities['experience'][0] == 'low':
                adjustments['experience'] = 1.8
                if breed_info.get('Care Level') == 'HIGH':
                    adjustments['experience'] = 2.0
            elif extremities['experience'][0] == 'high':
                if is_working_dog:
                    adjustments['experience'] = 1.8  # 從2.5降低到1.8
    
            # 特殊組合的處理
            def adjust_for_combinations():
                if (extremities['space'][0] == 'restricted' and 
                    extremities['exercise'][0] in ['high', 'extremely_high']):
                    # 適度降低極端組合的影響
                    adjustments['space'] = adjustments.get('space', 1.0) * 1.2
                    adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.2
    
                # 理想組合的獎勵
                if (extremities['experience'][0] == 'high' and
                    extremities['space'][0] == 'spacious' and
                    extremities['exercise'][0] in ['high', 'extremely_high'] and
                    is_working_dog):
                    adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3
                    adjustments['experience'] = adjustments.get('experience', 1.0) * 1.3
    
            adjust_for_combinations()
            return adjustments
    
        # 獲取條件極端度
        extremities = analyze_condition_extremity()
    
        # 計算權重調整
        weight_adjustments = calculate_weight_adjustments(extremities)
    
        # 應用權重調整,確保總和為1
        final_weights = base_weights.copy()
        for key, adjustment in weight_adjustments.items():
            if key in final_weights:
                final_weights[key] *= adjustment
    
        # 正規化權重
        total_weight = sum(final_weights.values())
        normalized_weights = {k: v/total_weight for k, v in final_weights.items()}
    
        return normalized_weights
    
        def calculate_weight_adjustments(extremities):
            """
            1. 高運動量時對耐力型犬種的偏好
            2. 專家級別對工作犬種的偏好
            3. 條件組合的整體評估
            """
            adjustments = {}
            temperament = breed_info.get('Temperament', '').lower()
            is_working_dog = any(trait in temperament 
                                for trait in ['herding', 'working', 'intelligent', 'tireless'])
            
            # 空間權重調整邏輯保持不變
            if extremities['space'][0] == 'highly_restricted':
                if extremities['exercise'][0] in ['high', 'extremely_high']:
                    adjustments['space'] = 1.8  # 降低空間限制的權重
                    adjustments['exercise'] = 2.5  # 提高運動能力的權重
                else:
                    adjustments['space'] = 2.5
                    adjustments['noise'] = 2.0
            elif extremities['space'][0] == 'restricted':
                adjustments['space'] = 1.8
                adjustments['noise'] = 1.5
            elif extremities['space'][0] == 'spacious':
                adjustments['space'] = 0.8
                adjustments['exercise'] = 1.4
            
            # 改進運動需求權重調整
            if extremities['exercise'][0] in ['high', 'extremely_high']:
                # 提高運動量高時的基礎分數
                base_exercise_adjustment = 2.2
                if user_prefs.living_space == 'apartment':
                    base_exercise_adjustment = 2.5  # 特別獎勵公寓住戶的高運動量
                adjustments['exercise'] = base_exercise_adjustment
            if extremities['exercise'][0] in ['extremely_low', 'extremely_high']:
                base_adjustment = 2.5
                if extremities['exercise'][0] == 'extremely_high':
                    if is_working_dog:
                        base_adjustment = 3.0  # 工作犬在高運動量時獲得更高權重
                adjustments['exercise'] = base_adjustment
            elif extremities['exercise'][0] in ['low', 'high']:
                adjustments['exercise'] = 1.8
            
            # 改進經驗需求權重調整
            if extremities['experience'][0] == 'low':
                adjustments['experience'] = 2.2
                if breed_info.get('Care Level') == 'HIGH':
                    adjustments['experience'] = 2.5
            elif extremities['experience'][0] == 'high':
                if is_working_dog:
                    adjustments['experience'] = 2.5  # 提高專家對工作犬的權重
                    if extremities['exercise'][0] in ['high', 'extremely_high']:
                        adjustments['experience'] = 2.8  # 特別強化高運動量工作犬
                else:
                    adjustments['experience'] = 1.8
            
            # 綜合條件影響
            def adjust_for_combinations():
                # 保持原有的基礎邏輯
                if (extremities['space'][0] == 'highly_restricted' and 
                    extremities['exercise'][0] in ['high', 'extremely_high']):
                    adjustments['space'] = adjustments.get('space', 1.0) * 1.3
                    adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3
                
                # 新增:專家 + 大空間 + 高運動量 + 工作犬的組合
                if (extremities['experience'][0] == 'high' and 
                    extremities['space'][0] == 'spacious' and
                    extremities['exercise'][0] in ['high', 'extremely_high'] and
                    is_working_dog):
                    adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.4
                    adjustments['experience'] = adjustments.get('experience', 1.0) * 1.4
                
                if extremities['space'][0] == 'spacious':
                    for key in ['grooming', 'health', 'noise']:
                        if key not in adjustments:
                            adjustments[key] = 1.2

            def ensure_minimum_score(score):
                if all([
                    extremities['exercise'][0] in ['high', 'extremely_high'],
                    breed_matches_exercise_needs(),  # 檢查品種是否適合該運動量
                    score < 0.85
                ]):
                    return 0.85
                return score
            
            adjust_for_combinations()
            return adjustments
    
        # 獲取條件極端度
        extremities = analyze_condition_extremity()
        
        # 計算權重調整
        weight_adjustments = calculate_weight_adjustments(extremities)
        
        # 應用權重調整
        final_weights = base_weights.copy()
        for key, adjustment in weight_adjustments.items():
            if key in final_weights:
                final_weights[key] *= adjustment
                
        return final_weights

    def apply_special_case_adjustments(score: float) -> float:
        """
        處理特殊情況和極端案例的評分調整。這個函數特別關注:
        1. 條件組合的協同效應
        2. 品種特性的獨特需求
        3. 極端情況的合理處理
        
        這個函數就像是一個細心的裁判,會考慮到各種特殊情況,
        並根據具體場景做出合理的評分調整。
        
        Parameters:
            score: 初始評分
        Returns:
            float: 調整後的評分(0.2-1.0之間)
        """
        severity_multiplier = 1.0
    
        def evaluate_spatial_exercise_combination() -> float:
            """
            評估空間與運動需求的組合效應。
            
            這個函數不再過分懲罰大型犬,而是更多地考慮品種的實際特性。
            就像評估一個運動員是否適合在特定場地訓練一樣,我們需要考慮
            場地大小和運動需求的整體匹配度。
            """
            multiplier = 1.0
            
            if user_prefs.living_space == 'apartment':
                temperament = breed_info.get('Temperament', '').lower()
                description = breed_info.get('Description', '').lower()
                
                # 檢查品種是否有利於公寓生活的特徵
                apartment_friendly = any(trait in temperament or trait in description
                                      for trait in ['calm', 'adaptable', 'quiet'])
                
                # 大型犬的特殊處理
                if breed_info['Size'] in ['Large', 'Giant']:
                    if apartment_friendly:
                        multiplier *= 0.85  # 從0.7提升到0.85,降低懲罰
                    else:
                        multiplier *= 0.75  # 從0.5提升到0.75
                
                # 檢查運動需求的匹配度
                exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
                exercise_time = user_prefs.exercise_time
                
                if exercise_needs in ['HIGH', 'VERY HIGH']:
                    if exercise_time >= 120:  # 高運動量可以部分補償空間限制
                        multiplier *= 1.1
            
            return multiplier
    
        def evaluate_experience_combination() -> float:
            """
            評估經驗需求的複合影響。
            
            這個函數就像是評估一個工作崗位與應聘者經驗的匹配度,
            需要綜合考慮工作難度和應聘者能力。
            """
            multiplier = 1.0
            temperament = breed_info.get('Temperament', '').lower()
            care_level = breed_info.get('Care Level', 'MODERATE')
            
            # 新手飼主的特殊考慮,更寬容的評估標準
            if user_prefs.experience_level == 'beginner':
                if care_level == 'HIGH':
                    if user_prefs.has_children:
                        multiplier *= 0.7  # 從0.5提升到0.7
                    else:
                        multiplier *= 0.8  # 從0.6提升到0.8
                
                # 性格特徵影響,降低懲罰程度
                challenging_traits = {
                    'stubborn': -0.10,      # 從-0.15降低
                    'independent': -0.08,    # 從-0.12降低
                    'dominant': -0.08,       # 從-0.12降低
                    'protective': -0.06,     # 從-0.10降低
                    'aggressive': -0.15      # 保持較高懲罰因安全考慮
                }
                
                for trait, penalty in challenging_traits.items():
                    if trait in temperament:
                        multiplier *= (1 + penalty)
            
            return multiplier
    
        def evaluate_breed_specific_requirements() -> float:
            """
            評估品種特定需求。
            
            這個函數就像是為每個品種量身定制評估標準,
            考慮其獨特的特性和需求。
            """
            multiplier = 1.0
            exercise_time = user_prefs.exercise_time
            exercise_type = user_prefs.exercise_type
            
            # 檢查品種特性
            temperament = breed_info.get('Temperament', '').lower()
            description = breed_info.get('Description', '').lower()
            exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
            
            # 運動需求匹配度評估,更合理的標準
            if exercise_needs == 'LOW':
                if exercise_time > 120:
                    multiplier *= 0.85  # 從0.5提升到0.85
            elif exercise_needs == 'VERY HIGH':
                if exercise_time < 60:
                    multiplier *= 0.7   # 從0.5提升到0.7
            
            # 特殊品種類型的考慮
            if 'sprint' in temperament:
                if exercise_time > 120 and exercise_type != 'active_training':
                    multiplier *= 0.85  # 從0.7提升到0.85
                    
            if any(trait in temperament for trait in ['working', 'herding']):
                if exercise_time < 90 or exercise_type == 'light_walks':
                    multiplier *= 0.8   # 從0.7提升到0.8
            
            return multiplier
    
        # 計算各項調整
        space_exercise_mult = evaluate_spatial_exercise_combination()
        experience_mult = evaluate_experience_combination()
        breed_specific_mult = evaluate_breed_specific_requirements()
        
        # 整合所有調整因素
        severity_multiplier *= space_exercise_mult
        severity_multiplier *= experience_mult
        severity_multiplier *= breed_specific_mult
        
        # 應用最終調整,確保分數在合理範圍內
        final_score = score * severity_multiplier
        return max(0.2, min(1.0, final_score))

    def calculate_base_score(scores: dict, weights: dict) -> float:
        """
        計算基礎評分分數,採用更靈活的評分機制。
        
        這個函數使用了改進後的評分邏輯,主要關注:
        1. 降低關鍵指標的最低門檻,使系統更包容
        2. 引入非線性評分曲線,讓分數分布更合理
        3. 優化多重條件失敗的處理方式
        4. 加強對品種特性的考慮
        
        Parameters:
            scores: 包含各項評分的字典
            weights: 包含各項權重的字典
        
        Returns:
            float: 0.2到1.0之間的基礎分數
        """
        # 重新定義關鍵指標閾值,提供更寬容的評分標準
        critical_thresholds = {
            'space': 0.4,       # 從0.45降低到0.4
            'exercise': 0.4,    # 從0.45降低到0.4
            'experience': 0.5,  # 從0.55降低到0.5
            'noise': 0.5        # 保持不變,因為噪音確實是重要考慮因素
        }
    
        # 評估關鍵指標失敗情況
        def evaluate_critical_failures() -> list:
            """
            評估關鍵指標的失敗情況,但採用更寬容的標準。
            根據品種特性動態調整失敗判定。
            """
            failures = []
            temperament = breed_info.get('Temperament', '').lower()
            
            for metric, threshold in critical_thresholds.items():
                if scores[metric] < threshold:
                    # 特殊情況處理:適應性強的品種可以有更低的空間要求
                    if metric == 'space' and any(trait in temperament 
                       for trait in ['adaptable', 'calm', 'apartment']):
                        if scores[metric] >= threshold - 0.1:
                            continue
                            
                    # 運動需求的特殊處理
                    elif metric == 'exercise':
                        exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
                        if exercise_needs == 'LOW' and scores[metric] >= threshold - 0.1:
                            continue
                            
                    failures.append((metric, scores[metric]))
            
            return failures
    
        # 計算基礎分數
        def calculate_weighted_score() -> float:
            """
            計算加權分數,使用非線性函數使分數分布更合理。
            """
            weighted_scores = []
            for key, score in scores.items():
                if key in weights:
                    # 使用sigmoid函數使分數曲線更平滑
                    adjusted_score = 1 / (1 + math.exp(-10 * (score - 0.5)))
                    weighted_scores.append(adjusted_score * weights[key])
            
            return sum(weighted_scores)
    
        # 處理臨界失敗情況
        critical_failures = evaluate_critical_failures()
        base_score = calculate_weighted_score()
    
        if critical_failures:
            # 分離空間和運動相關的懲罰
            space_exercise_penalty = 0
            other_penalty = 0
            
            for metric, score in critical_failures:
                if metric in ['space', 'exercise']:
                    # 降低空間和運動失敗的懲罰程度
                    penalty = (critical_thresholds[metric] - score) * 0.12  # 從0.15降低到0.12
                    space_exercise_penalty += penalty
                else:
                    # 其他失敗的懲罰保持較高
                    penalty = (critical_thresholds[metric] - score) * 0.25  # 從0.3降低到0.25
                    other_penalty += penalty
    
            # 計算總懲罰,但使用更溫和的方式
            total_penalty = (space_exercise_penalty + other_penalty) / 2
            base_score *= (1 - total_penalty)
    
            # 多重失敗的處理更寬容
            if len(critical_failures) > 1:
                # 從0.98提升到0.99,降低多重失敗的疊加懲罰
                base_score *= (0.99 ** (len(critical_failures) - 1))
    
        # 品種特性加分
        def apply_breed_bonus() -> float:
            """
            根據品種特性提供額外加分,
            特別是對於在特定環境下表現良好的品種。
            """
            bonus = 0
            temperament = breed_info.get('Temperament', '').lower()
            description = breed_info.get('Description', '').lower()
            
            # 適應性加分
            adaptability_traits = ['adaptable', 'versatile', 'easy-going']
            if any(trait in temperament for trait in adaptability_traits):
                bonus += 0.05
                
            # 公寓適應性加分
            if user_prefs.living_space == 'apartment':
                apartment_traits = ['calm', 'quiet', 'good for apartments']
                if any(trait in temperament or trait in description for trait in apartment_traits):
                    bonus += 0.05
                    
            return min(0.1, bonus)  # 限制最大加分
    
        # 應用品種特性加分
        breed_bonus = apply_breed_bonus()
        base_score = min(1.0, base_score * (1 + breed_bonus))
    
        # 確保最終分數在合理範圍內
        return max(0.2, min(1.0, base_score))

  
    def evaluate_condition_interactions(scores: dict) -> float:
        """
        評估不同條件間的相互影響,更寬容地處理極端組合
        """
        interaction_penalty = 1.0
        
        # 只保留最基本的經驗相關評估
        if user_prefs.experience_level == 'beginner':
            if breed_info.get('Care Level') == 'HIGH':
                interaction_penalty *= 0.95  
        
        # 運動時間與類型的基本互動也降低懲罰程度
        exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
        if exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks':
            interaction_penalty *= 0.95  
                
        return interaction_penalty

    def calculate_adjusted_perfect_bonus(perfect_conditions: dict) -> float:
        """
        計算完美匹配獎勵,但更注重條件的整體表現。
        """
        bonus = 1.0
        
        # 降低單項獎勵的影響力
        bonus += 0.06 * perfect_conditions['size_match']
        bonus += 0.06 * perfect_conditions['exercise_match']
        bonus += 0.06 * perfect_conditions['experience_match']
        bonus += 0.03 * perfect_conditions['living_condition_match']
        
        # 如果有任何條件表現不佳,降低整體獎勵
        low_scores = [score for score in perfect_conditions.values() if score < 0.6]
        if low_scores:
            bonus *= (0.85 ** len(low_scores))
            
        # 確保獎勵不會過高
        return min(1.25, bonus)

    def apply_breed_specific_adjustments(score: float) -> float:
        """
        根據品種特性進行最終調整。
        考慮品種的特殊性質和限制因素。
        """
        # 檢查是否存在極端不匹配的情況
        exercise_mismatch = False
        size_mismatch = False
        experience_mismatch = False
        
        # 運動需求極端不匹配
        if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
            if user_prefs.exercise_time < 90 or user_prefs.exercise_type == 'light_walks':
                exercise_mismatch = True
                
        # 體型與空間極端不匹配
        if user_prefs.living_space == 'apartment' and breed_info['Size'] in ['Large', 'Giant']:
            size_mismatch = True
            
        # 經驗需求極端不匹配
        if user_prefs.experience_level == 'beginner' and breed_info.get('Care Level') == 'HIGH':
            experience_mismatch = True
            
        # 根據不匹配的數量進行懲罰
        mismatch_count = sum([exercise_mismatch, size_mismatch, experience_mismatch])
        if mismatch_count > 0:
            score *= (0.8 ** mismatch_count)
            
        return score

    # 計算動態權重
    weights = calculate_weights()
    
    # 正規化權重
    total_weight = sum(weights.values())
    normalized_weights = {k: v/total_weight for k, v in weights.items()}
    
    # 計算基礎分數
    base_score = calculate_base_score(scores, normalized_weights)
    
    # 評估條件互動
    interaction_multiplier = evaluate_condition_interactions(scores)
    
    # 計算完美匹配獎勵
    perfect_conditions = evaluate_perfect_conditions()
    perfect_bonus = calculate_adjusted_perfect_bonus(perfect_conditions)
    
    # 計算初步分數
    preliminary_score = base_score * interaction_multiplier * perfect_bonus
    
    # 應用品種特定調整
    final_score = apply_breed_specific_adjustments(preliminary_score)
    
    # 確保分數在合理範圍內,並降低最高可能分數
    max_possible_score = 0.96  # 降低最高可能分數
    min_possible_score = 0.3
    
    return min(max_possible_score, max(min_possible_score, final_score))


def amplify_score_extreme(score: float) -> float:
    """
    優化分數分布,提供更有意義的評分範圍。
    純粹進行數學轉換,不依賴外部資訊。
    
    Parameters:
        score: 原始評分(0-1之間的浮點數)
    
    Returns:
        float: 調整後的評分(0-1之間的浮點數)
    """
    def smooth_curve(x: float, steepness: float = 12) -> float:
        """創建平滑的S型曲線用於分數轉換"""
        import math
        return 1 / (1 + math.exp(-steepness * (x - 0.5)))

    # 90-100分的轉換(極佳匹配)
    if score >= 0.90:
        position = (score - 0.90) / 0.10
        return 0.96 + (position * 0.04)
        
    # 80-90分的轉換(優秀匹配)
    elif score >= 0.80:
        position = (score - 0.80) / 0.10
        return 0.90 + (position * 0.06)
        
    # 70-80分的轉換(良好匹配)
    elif score >= 0.70:
        position = (score - 0.70) / 0.10
        return 0.82 + (position * 0.08)
        
    # 50-70分的轉換(可接受匹配)
    elif score >= 0.50:
        position = (score - 0.50) / 0.20
        return 0.75 + (smooth_curve(position) * 0.07)
        
    # 50分以下的轉換(較差匹配)
    else:
        position = score / 0.50
        return 0.70 + (smooth_curve(position) * 0.05)

    return round(min(1.0, max(0.0, score)), 4)

# def amplify_score_extreme(score: float) -> float:
#     """優化分數分布,提供更高的分數範圍"""
#     def smooth_curve(x: float, steepness: float = 12) -> float:
#         import math
#         return 1 / (1 + math.exp(-steepness * (x - 0.5)))

#     if score >= 0.9:
#         position = (score - 0.9) / 0.1
#         return 0.96 + (position * 0.04)  # 90-100的原始分映射到96-100
        
#     elif score >= 0.8:
#         position = (score - 0.8) / 0.1
#         return 0.90 + (position * 0.06)  # 80-90的原始分映射到90-96
        
#     elif score >= 0.7:
#         position = (score - 0.7) / 0.1
#         return 0.82 + (position * 0.08)  # 70-80的原始分映射到82-90
        
#     elif score >= 0.5:
#         position = (score - 0.5) / 0.2
#         return 0.75 + (smooth_curve(position) * 0.07)  # 50-70的原始分映射到75-82
        
#     else:
#         position = score / 0.5
#         return 0.70 + (smooth_curve(position) * 0.05)  # 50以下的原始分映射到70-75