Spaces:
Running
Running
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +488 -1280
scoring_calculation_system.py
CHANGED
@@ -3,59 +3,29 @@ from breed_health_info import breed_health_info
|
|
3 |
from breed_noise_info import breed_noise_info
|
4 |
import traceback
|
5 |
import math
|
6 |
-
import random
|
7 |
-
|
8 |
-
# @dataclass
|
9 |
-
# class UserPreferences:
|
10 |
-
|
11 |
-
# """使用者偏好設定的資料結構"""
|
12 |
-
# living_space: str # "apartment", "house_small", "house_large"
|
13 |
-
# yard_access: str # "no_yard", "shared_yard", "private_yard"
|
14 |
-
# exercise_time: int # minutes per day
|
15 |
-
# exercise_type: str # "light_walks", "moderate_activity", "active_training"
|
16 |
-
# grooming_commitment: str # "low", "medium", "high"
|
17 |
-
# experience_level: str # "beginner", "intermediate", "advanced"
|
18 |
-
# time_availability: str # "limited", "moderate", "flexible"
|
19 |
-
# has_children: bool
|
20 |
-
# children_age: str # "toddler", "school_age", "teenager"
|
21 |
-
# noise_tolerance: str # "low", "medium", "high"
|
22 |
-
# space_for_play: bool
|
23 |
-
# other_pets: bool
|
24 |
-
# climate: str # "cold", "moderate", "hot"
|
25 |
-
# health_sensitivity: str = "medium"
|
26 |
-
# barking_acceptance: str = None
|
27 |
-
|
28 |
-
# def __post_init__(self):
|
29 |
-
# """在初始化後運行,用於設置派生值"""
|
30 |
-
# if self.barking_acceptance is None:
|
31 |
-
# self.barking_acceptance = self.noise_tolerance
|
32 |
|
33 |
@dataclass
|
34 |
class UserPreferences:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
has_children: bool
|
44 |
-
children_age: str
|
45 |
-
noise_tolerance: str
|
46 |
space_for_play: bool
|
47 |
other_pets: bool
|
48 |
-
climate: str
|
49 |
-
|
50 |
-
|
51 |
-
exercise_intensity: str = "moderate" # "low", "moderate", "high"
|
52 |
-
home_alone_time: int = 4 # 每日獨處時間(小時)
|
53 |
-
health_sensitivity: str = "medium" # "low", "medium", "high"
|
54 |
-
barking_acceptance: str = None # 如果未指定,默認使用 noise_tolerance
|
55 |
-
lifestyle_activity: str = "moderate" # "sedentary", "moderate", "active"
|
56 |
|
57 |
def __post_init__(self):
|
58 |
-
"""
|
59 |
if self.barking_acceptance is None:
|
60 |
self.barking_acceptance = self.noise_tolerance
|
61 |
|
@@ -446,404 +416,182 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
446 |
raise KeyError("Size information missing")
|
447 |
|
448 |
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
# """
|
456 |
-
# # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
|
457 |
-
# base_scores = {
|
458 |
-
# "Small": {
|
459 |
-
# "apartment": 0.85, # 降低滿分機會
|
460 |
-
# "house_small": 0.80, # 小型犬不應在大空間得到太高分數
|
461 |
-
# "house_large": 0.75 # 避免小型犬總是得到最高分
|
462 |
-
# },
|
463 |
-
# "Medium": {
|
464 |
-
# "apartment": 0.45, # 維持對公寓環境的限制
|
465 |
-
# "house_small": 0.75, # 適中的分數
|
466 |
-
# "house_large": 0.85 # 給予合理的獎勵
|
467 |
-
# },
|
468 |
-
# "Large": {
|
469 |
-
# "apartment": 0.15, # 加重對大型犬在公寓的限制
|
470 |
-
# "house_small": 0.65, # 中等適合度
|
471 |
-
# "house_large": 0.90 # 最適合的環境
|
472 |
-
# },
|
473 |
-
# "Giant": {
|
474 |
-
# "apartment": 0.10, # 更嚴格的限制
|
475 |
-
# "house_small": 0.45, # 顯著的空間限制
|
476 |
-
# "house_large": 0.95 # 最理想的配對
|
477 |
-
# }
|
478 |
-
# }
|
479 |
-
|
480 |
-
# # 取得基礎分數
|
481 |
-
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
482 |
-
|
483 |
-
# # 運動需求相關的調整更加動態
|
484 |
-
# exercise_adjustments = {
|
485 |
-
# "Very High": {
|
486 |
-
# "apartment": -0.25, # 加重在受限空間的懲罰
|
487 |
-
# "house_small": -0.15,
|
488 |
-
# "house_large": -0.05
|
489 |
-
# },
|
490 |
-
# "High": {
|
491 |
-
# "apartment": -0.20,
|
492 |
-
# "house_small": -0.10,
|
493 |
-
# "house_large": 0
|
494 |
-
# },
|
495 |
-
# "Moderate": {
|
496 |
-
# "apartment": -0.10,
|
497 |
-
# "house_small": -0.05,
|
498 |
-
# "house_large": 0
|
499 |
-
# },
|
500 |
-
# "Low": {
|
501 |
-
# "apartment": 0.05, # 低運動需求在小空間反而有優勢
|
502 |
-
# "house_small": 0,
|
503 |
-
# "house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
504 |
-
# }
|
505 |
-
# }
|
506 |
-
|
507 |
-
# # 根據空間類型獲取運動需求調整
|
508 |
-
# adjustment = exercise_adjustments.get(exercise_needs,
|
509 |
-
# exercise_adjustments["Moderate"])[living_space]
|
510 |
-
|
511 |
-
# # 院子效益根據品種大小和運動需求動態調整
|
512 |
-
# if has_yard:
|
513 |
-
# yard_bonus = {
|
514 |
-
# "Giant": 0.20,
|
515 |
-
# "Large": 0.15,
|
516 |
-
# "Medium": 0.10,
|
517 |
-
# "Small": 0.05
|
518 |
-
# }.get(size, 0.10)
|
519 |
-
|
520 |
-
# # 運動需求會影響院子的重要性
|
521 |
-
# if exercise_needs in ["Very High", "High"]:
|
522 |
-
# yard_bonus *= 1.2
|
523 |
-
# elif exercise_needs == "Low":
|
524 |
-
# yard_bonus *= 0.8
|
525 |
-
|
526 |
-
# current_score = base_score + adjustment + yard_bonus
|
527 |
-
# else:
|
528 |
-
# current_score = base_score + adjustment
|
529 |
-
|
530 |
-
# # 確保分數在合理範圍內,但避免極端值
|
531 |
-
# return min(0.95, max(0.15, current_score))
|
532 |
-
|
533 |
-
|
534 |
-
# def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
535 |
-
# """
|
536 |
-
# 精確評估品種運動需求與使用者運動條件的匹配度
|
537 |
-
|
538 |
-
# Parameters:
|
539 |
-
# breed_needs: 品種的運動需求等級
|
540 |
-
# exercise_time: 使用者能提供的運動時間(分鐘)
|
541 |
-
# exercise_type: 使用者偏好的運動類型
|
542 |
-
|
543 |
-
# Returns:
|
544 |
-
# float: -0.2 到 0.2 之間的匹配分數
|
545 |
-
# """
|
546 |
-
# # 定義更細緻的運動需求等級
|
547 |
-
# exercise_levels = {
|
548 |
-
# 'VERY HIGH': {
|
549 |
-
# 'min': 120,
|
550 |
-
# 'ideal': 150,
|
551 |
-
# 'max': 180,
|
552 |
-
# 'intensity': 'high',
|
553 |
-
# 'sessions': 'multiple',
|
554 |
-
# 'preferred_types': ['active_training', 'intensive_exercise']
|
555 |
-
# },
|
556 |
-
# 'HIGH': {
|
557 |
-
# 'min': 90,
|
558 |
-
# 'ideal': 120,
|
559 |
-
# 'max': 150,
|
560 |
-
# 'intensity': 'moderate_high',
|
561 |
-
# 'sessions': 'multiple',
|
562 |
-
# 'preferred_types': ['active_training', 'moderate_activity']
|
563 |
-
# },
|
564 |
-
# 'MODERATE HIGH': {
|
565 |
-
# 'min': 70,
|
566 |
-
# 'ideal': 90,
|
567 |
-
# 'max': 120,
|
568 |
-
# 'intensity': 'moderate',
|
569 |
-
# 'sessions': 'flexible',
|
570 |
-
# 'preferred_types': ['moderate_activity', 'active_training']
|
571 |
-
# },
|
572 |
-
# 'MODERATE': {
|
573 |
-
# 'min': 45,
|
574 |
-
# 'ideal': 60,
|
575 |
-
# 'max': 90,
|
576 |
-
# 'intensity': 'moderate',
|
577 |
-
# 'sessions': 'flexible',
|
578 |
-
# 'preferred_types': ['moderate_activity', 'light_walks']
|
579 |
-
# },
|
580 |
-
# 'MODERATE LOW': {
|
581 |
-
# 'min': 30,
|
582 |
-
# 'ideal': 45,
|
583 |
-
# 'max': 70,
|
584 |
-
# 'intensity': 'light_moderate',
|
585 |
-
# 'sessions': 'flexible',
|
586 |
-
# 'preferred_types': ['light_walks', 'moderate_activity']
|
587 |
-
# },
|
588 |
-
# 'LOW': {
|
589 |
-
# 'min': 15,
|
590 |
-
# 'ideal': 30,
|
591 |
-
# 'max': 45,
|
592 |
-
# 'intensity': 'light',
|
593 |
-
# 'sessions': 'single',
|
594 |
-
# 'preferred_types': ['light_walks']
|
595 |
-
# }
|
596 |
-
# }
|
597 |
-
|
598 |
-
# # 獲取品種的運動需求配置
|
599 |
-
# breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
600 |
-
|
601 |
-
# # 計算時間匹配度(使用更平滑的評分曲線)
|
602 |
-
# if exercise_time >= breed_level['ideal']:
|
603 |
-
# if exercise_time > breed_level['max']:
|
604 |
-
# # 運動時間過長,適度降分
|
605 |
-
# time_score = 0.15 - (0.05 * (exercise_time - breed_level['max']) / 30)
|
606 |
-
# else:
|
607 |
-
# time_score = 0.15
|
608 |
-
# elif exercise_time >= breed_level['min']:
|
609 |
-
# # 在最小需求和理想需求之間,線性計算分數
|
610 |
-
# time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
611 |
-
# time_score = 0.05 + (time_ratio * 0.10)
|
612 |
-
# else:
|
613 |
-
# # 運動時間不足,根據差距程度扣分
|
614 |
-
# time_ratio = max(0, exercise_time / breed_level['min'])
|
615 |
-
# time_score = -0.15 * (1 - time_ratio)
|
616 |
-
|
617 |
-
# # 運動類型匹配度評估
|
618 |
-
# type_score = 0.0
|
619 |
-
# if exercise_type in breed_level['preferred_types']:
|
620 |
-
# type_score = 0.05
|
621 |
-
# if exercise_type == breed_level['preferred_types'][0]:
|
622 |
-
# type_score = 0.08 # 最佳匹配類型給予更高分數
|
623 |
-
|
624 |
-
# return max(-0.2, min(0.2, time_score + type_score))
|
625 |
-
|
626 |
-
|
627 |
-
def calculate_space_score(breed_info: dict, user_prefs: UserPreferences) -> float:
|
628 |
-
"""
|
629 |
-
計算品種與居住空間的匹配程度
|
630 |
-
|
631 |
-
這個函數實現了一個全面的空間評分系統,考慮:
|
632 |
-
1. 基本空間需求(住所類型與品種大小的匹配)
|
633 |
-
2. 樓層因素(特別是公寓住戶)
|
634 |
-
3. 戶外活動空間(院子類型及可用性)
|
635 |
-
4. 室內活動空間的實際可用性
|
636 |
-
5. 品種的特殊空間需求
|
637 |
-
|
638 |
-
Parameters:
|
639 |
-
-----------
|
640 |
-
breed_info: 包含品種特徵的字典,包括體型、活動需求等
|
641 |
-
user_prefs: 使用者偏好設定,包含居住條件相關信息
|
642 |
-
|
643 |
-
Returns:
|
644 |
-
--------
|
645 |
-
float: 0.0-1.0 之間的匹配分數
|
646 |
"""
|
647 |
-
#
|
648 |
-
|
649 |
-
temperament = breed_info.get('Temperament', '').lower()
|
650 |
-
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
651 |
-
|
652 |
-
# 基礎空間需求評分矩陣 - 考慮品種大小與居住空間的基本匹配度
|
653 |
-
base_space_scores = {
|
654 |
"Small": {
|
655 |
-
"apartment": 0.
|
656 |
-
"house_small": 0.
|
657 |
-
"house_large": 0.
|
658 |
},
|
659 |
"Medium": {
|
660 |
-
"apartment": 0.
|
661 |
-
"house_small": 0.
|
662 |
-
"house_large": 0.
|
663 |
},
|
664 |
"Large": {
|
665 |
-
"apartment": 0.
|
666 |
-
"house_small": 0.
|
667 |
-
"house_large":
|
668 |
},
|
669 |
"Giant": {
|
670 |
-
"apartment": 0.
|
671 |
-
"house_small": 0.
|
672 |
-
"house_large":
|
673 |
}
|
674 |
}
|
675 |
|
676 |
-
#
|
677 |
-
base_score =
|
678 |
-
|
679 |
-
#
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
"
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
"Giant": 1.2,
|
702 |
-
"Large": 1.1,
|
703 |
-
"Medium": 1.0,
|
704 |
-
"Small": 0.8
|
705 |
}
|
706 |
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
temperament_adjustments -= 0.05
|
726 |
-
|
727 |
-
if 'calm' in temperament or 'lazy' in temperament:
|
728 |
-
if user_prefs.living_space == 'apartment':
|
729 |
-
temperament_adjustments += 0.10
|
730 |
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
# 公寓中有孩童需要更多活動空間
|
738 |
-
if size in ["Large", "Giant"]:
|
739 |
-
base_score *= 0.85
|
740 |
-
elif size == "Medium":
|
741 |
-
base_score *= 0.90
|
742 |
-
|
743 |
-
# 整合所有評分因素
|
744 |
-
final_score = base_score + yard_bonus + activity_space_score + temperament_adjustments
|
745 |
-
|
746 |
-
# 確保最終分數在合理範圍內
|
747 |
-
return max(0.15, min(1.0, final_score))
|
748 |
|
749 |
|
750 |
-
def calculate_exercise_score(breed_needs: str, exercise_time: int,
|
751 |
"""
|
752 |
-
|
753 |
-
|
754 |
-
這個函數實現了一個精細的運動評分系統,考慮:
|
755 |
-
1. 運動時間的匹配度(0-180分鐘)
|
756 |
-
2. 運動強度的適配性
|
757 |
-
3. 品種特性對運動的特殊需求
|
758 |
-
4. 生活方式的整體活躍度
|
759 |
|
760 |
Parameters:
|
761 |
-
-----------
|
762 |
breed_needs: 品種的運動需求等級
|
763 |
exercise_time: 使用者能提供的運動時間(分鐘)
|
764 |
-
|
765 |
|
766 |
Returns:
|
767 |
-
|
768 |
-
float: 0.0-1.0 之間的匹配分數
|
769 |
"""
|
770 |
-
#
|
771 |
exercise_levels = {
|
772 |
'VERY HIGH': {
|
773 |
'min': 120,
|
774 |
'ideal': 150,
|
775 |
'max': 180,
|
776 |
-
'
|
777 |
-
'
|
778 |
-
'
|
779 |
},
|
780 |
'HIGH': {
|
781 |
'min': 90,
|
782 |
'ideal': 120,
|
783 |
'max': 150,
|
784 |
-
'
|
785 |
-
'
|
786 |
-
'
|
787 |
},
|
788 |
-
'MODERATE': {
|
789 |
-
'min':
|
790 |
'ideal': 90,
|
791 |
'max': 120,
|
792 |
-
'
|
793 |
-
'
|
794 |
-
'
|
795 |
},
|
796 |
-
'
|
797 |
-
'min':
|
798 |
'ideal': 60,
|
799 |
'max': 90,
|
800 |
-
'
|
801 |
-
'
|
802 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
803 |
}
|
804 |
}
|
805 |
|
806 |
-
#
|
807 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
808 |
|
809 |
-
#
|
810 |
-
|
811 |
-
if
|
812 |
-
#
|
813 |
-
|
814 |
-
elif time < level['ideal']:
|
815 |
-
# 運動時間接近理想,線性增長
|
816 |
-
return 0.7 + 0.3 * ((time - level['min']) / (level['ideal'] - level['min']))
|
817 |
-
elif time <= level['max']:
|
818 |
-
# 理想運動時間範圍,高分保持
|
819 |
-
return 1.0
|
820 |
else:
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
#
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
}
|
840 |
-
lifestyle_factor = lifestyle_adjustments.get(user_prefs.lifestyle_activity, 0)
|
841 |
-
|
842 |
-
# 整合所有因素
|
843 |
-
final_score = time_score * intensity_factor + type_bonus + lifestyle_factor
|
844 |
-
|
845 |
-
# 確保分數在合理範圍內
|
846 |
-
return max(0.1, min(1.0, final_score))
|
847 |
|
848 |
|
849 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
@@ -977,275 +725,114 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
977 |
return max(0.1, min(1.0, final_score))
|
978 |
|
979 |
|
980 |
-
|
981 |
-
# """
|
982 |
-
# 計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
|
983 |
-
|
984 |
-
# 重要改進:
|
985 |
-
# 1. 擴大基礎分數差異
|
986 |
-
# 2. 加重困難特徵的懲罰
|
987 |
-
# 3. 更細緻的品種特性評估
|
988 |
-
# """
|
989 |
-
# # 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
|
990 |
-
# base_scores = {
|
991 |
-
# "High": {
|
992 |
-
# "beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
|
993 |
-
# "intermediate": 0.60, # 中級玩家仍需謹慎
|
994 |
-
# "advanced": 1.0 # 資深者能完全勝任
|
995 |
-
# },
|
996 |
-
# "Moderate": {
|
997 |
-
# "beginner": 0.35, # 適中難度對新手仍具挑戰
|
998 |
-
# "intermediate": 0.80, # 中級玩家較適合
|
999 |
-
# "advanced": 1.0 # 資深者完全勝任
|
1000 |
-
# },
|
1001 |
-
# "Low": {
|
1002 |
-
# "beginner": 0.90, # 新手友善品種
|
1003 |
-
# "intermediate": 0.95, # 中級玩家幾乎完全勝任
|
1004 |
-
# "advanced": 1.0 # 資深者完全勝任
|
1005 |
-
# }
|
1006 |
-
# }
|
1007 |
-
|
1008 |
-
# # 取得基礎分數
|
1009 |
-
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
1010 |
-
|
1011 |
-
# temperament_lower = temperament.lower()
|
1012 |
-
# temperament_adjustments = 0.0
|
1013 |
-
|
1014 |
-
# # 根據經驗等級設定不同的特徵評估標準
|
1015 |
-
# if user_experience == "beginner":
|
1016 |
-
# # 新手不適合的特徵 - 更嚴格的懲罰
|
1017 |
-
# difficult_traits = {
|
1018 |
-
# 'stubborn': -0.30, # 固執性格嚴重影響新手
|
1019 |
-
# 'independent': -0.25, # 獨立性高的品種不適合新手
|
1020 |
-
# 'dominant': -0.25, # 支配性強的品種需要經驗處理
|
1021 |
-
# 'strong-willed': -0.20, # 強勢性格需要技巧管理
|
1022 |
-
# 'protective': -0.20, # 保護性強需要適當訓練
|
1023 |
-
# 'aloof': -0.15, # 冷漠性格需要耐心培養
|
1024 |
-
# 'energetic': -0.15, # 活潑好動需要經驗引導
|
1025 |
-
# 'aggressive': -0.35 # 攻擊傾向極不適合新手
|
1026 |
-
# }
|
1027 |
-
|
1028 |
-
# # 新手友善的特徵 - 適度的獎勵
|
1029 |
-
# easy_traits = {
|
1030 |
-
# 'gentle': 0.05, # 溫和性格適合新手
|
1031 |
-
# 'friendly': 0.05, # 友善性格容易相處
|
1032 |
-
# 'eager to please': 0.08, # 願意服從較容易訓練
|
1033 |
-
# 'patient': 0.05, # 耐心的特質有助於建立關係
|
1034 |
-
# 'adaptable': 0.05, # 適應性強較容易照顧
|
1035 |
-
# 'calm': 0.06 # 冷靜的性格較好掌握
|
1036 |
-
# }
|
1037 |
-
|
1038 |
-
# # 計算特徵調整
|
1039 |
-
# for trait, penalty in difficult_traits.items():
|
1040 |
-
# if trait in temperament_lower:
|
1041 |
-
# temperament_adjustments += penalty
|
1042 |
-
|
1043 |
-
# for trait, bonus in easy_traits.items():
|
1044 |
-
# if trait in temperament_lower:
|
1045 |
-
# temperament_adjustments += bonus
|
1046 |
-
|
1047 |
-
# # 品種類型特殊評估
|
1048 |
-
# if 'terrier' in temperament_lower:
|
1049 |
-
# temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
|
1050 |
-
# elif 'working' in temperament_lower:
|
1051 |
-
# temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
|
1052 |
-
# elif 'guard' in temperament_lower:
|
1053 |
-
# temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
|
1054 |
-
|
1055 |
-
# elif user_experience == "intermediate":
|
1056 |
-
# # 中級玩家的特徵評估
|
1057 |
-
# moderate_traits = {
|
1058 |
-
# 'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
|
1059 |
-
# 'independent': -0.10,
|
1060 |
-
# 'intelligent': 0.08, # 聰明的特質可以好好發揮
|
1061 |
-
# 'athletic': 0.06, # 運動能力可以適當訓練
|
1062 |
-
# 'versatile': 0.07, # 多功能性可以開發
|
1063 |
-
# 'protective': -0.08 # 保護性仍需注意
|
1064 |
-
# }
|
1065 |
-
|
1066 |
-
# for trait, adjustment in moderate_traits.items():
|
1067 |
-
# if trait in temperament_lower:
|
1068 |
-
# temperament_adjustments += adjustment
|
1069 |
-
|
1070 |
-
# else: # advanced
|
1071 |
-
# # 資深玩家能夠應對挑戰性特徵
|
1072 |
-
# advanced_traits = {
|
1073 |
-
# 'stubborn': 0.05, # 困難特徵反而成為優勢
|
1074 |
-
# 'independent': 0.05,
|
1075 |
-
# 'intelligent': 0.10,
|
1076 |
-
# 'protective': 0.05,
|
1077 |
-
# 'strong-willed': 0.05
|
1078 |
-
# }
|
1079 |
-
|
1080 |
-
# for trait, bonus in advanced_traits.items():
|
1081 |
-
# if trait in temperament_lower:
|
1082 |
-
# temperament_adjustments += bonus
|
1083 |
-
|
1084 |
-
# # 確保最終分數範圍更大,讓差異更明顯
|
1085 |
-
# final_score = max(0.05, min(1.0, score + temperament_adjustments))
|
1086 |
-
|
1087 |
-
# return final_score
|
1088 |
-
|
1089 |
-
|
1090 |
-
def calculate_experience_score(breed_info: dict, user_prefs: UserPreferences) -> float:
|
1091 |
"""
|
1092 |
-
|
1093 |
-
|
1094 |
-
這個函數實現了一個全面的經驗評分系統,考慮:
|
1095 |
-
1. 品種的基本照護難度
|
1096 |
-
2. 飼主的經驗水平
|
1097 |
-
3. 特殊照護需求(如健康問題、行為訓練)
|
1098 |
-
4. 時間投入與生活方式的匹配
|
1099 |
-
5. 家庭環境對照護的影響
|
1100 |
-
|
1101 |
-
特別注意:
|
1102 |
-
- 新手飼主面對高難度品種時的顯著降分
|
1103 |
-
- 資深飼主照顧簡單品種的微幅降分
|
1104 |
-
- 特殊需求品種的額外評估
|
1105 |
|
1106 |
-
|
1107 |
-
|
1108 |
-
|
1109 |
-
|
1110 |
-
|
1111 |
-
Returns:
|
1112 |
-
--------
|
1113 |
-
float: 0.0-1.0 之間的匹配���數
|
1114 |
"""
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
"HIGH": {
|
1122 |
-
"beginner": 0.30, # 高難度品種對新手極具挑戰
|
1123 |
-
"intermediate": 0.70, # 中級飼主需要額外努力
|
1124 |
-
"advanced": 0.95 # 資深飼主最適合
|
1125 |
},
|
1126 |
-
"
|
1127 |
-
"beginner": 0.
|
1128 |
-
"intermediate": 0.
|
1129 |
-
"advanced": 0
|
1130 |
},
|
1131 |
-
"
|
1132 |
-
"beginner": 0.90, #
|
1133 |
-
"intermediate": 0.
|
1134 |
-
"advanced": 0
|
1135 |
}
|
1136 |
}
|
1137 |
|
1138 |
-
#
|
1139 |
-
|
1140 |
-
base_experience_scores["MODERATE"])[user_prefs.experience_level]
|
1141 |
-
|
1142 |
-
# 時間可用性評估
|
1143 |
-
time_adjustments = {
|
1144 |
-
"limited": {
|
1145 |
-
"HIGH": -0.20,
|
1146 |
-
"MODERATE": -0.15,
|
1147 |
-
"LOW": -0.10
|
1148 |
-
},
|
1149 |
-
"moderate": {
|
1150 |
-
"HIGH": -0.10,
|
1151 |
-
"MODERATE": -0.05,
|
1152 |
-
"LOW": 0
|
1153 |
-
},
|
1154 |
-
"flexible": {
|
1155 |
-
"HIGH": 0,
|
1156 |
-
"MODERATE": 0.05,
|
1157 |
-
"LOW": 0.10
|
1158 |
-
}
|
1159 |
-
}
|
1160 |
|
1161 |
-
|
|
|
1162 |
|
1163 |
-
#
|
1164 |
-
|
1165 |
-
|
1166 |
-
score = 0
|
1167 |
-
|
1168 |
-
# 困難特徵評估
|
1169 |
difficult_traits = {
|
1170 |
-
'stubborn':
|
1171 |
-
'independent':
|
1172 |
-
'dominant':
|
1173 |
-
'
|
|
|
|
|
|
|
|
|
1174 |
}
|
1175 |
|
1176 |
-
#
|
1177 |
-
|
1178 |
-
'
|
1179 |
-
'
|
1180 |
-
'
|
|
|
|
|
|
|
1181 |
}
|
1182 |
|
1183 |
-
#
|
1184 |
-
for trait,
|
1185 |
-
if trait in
|
1186 |
-
|
1187 |
-
|
1188 |
-
for trait, bonuses in friendly_traits.items():
|
1189 |
-
if trait in temp:
|
1190 |
-
score += bonuses[exp_level]
|
1191 |
-
|
1192 |
-
return score
|
1193 |
-
|
1194 |
-
temperament_adjustment = evaluate_temperament(temperament, user_prefs.experience_level)
|
1195 |
-
|
1196 |
-
# 健康問題評估
|
1197 |
-
def evaluate_health_needs(health: str, exp_level: str) -> float:
|
1198 |
-
"""評估健康問題的照護難度"""
|
1199 |
-
score = 0
|
1200 |
-
serious_conditions = ['hip dysplasia', 'heart disease', 'cancer']
|
1201 |
-
moderate_conditions = ['allergies', 'skin problems', 'ear infections']
|
1202 |
|
1203 |
-
|
1204 |
-
|
1205 |
-
|
1206 |
-
|
1207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1208 |
}
|
1209 |
|
1210 |
-
for
|
1211 |
-
if
|
1212 |
-
|
1213 |
|
1214 |
-
|
1215 |
-
|
1216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1217 |
|
1218 |
-
|
|
|
|
|
1219 |
|
1220 |
-
|
|
|
1221 |
|
1222 |
-
|
1223 |
-
family_adjustment = 0
|
1224 |
-
if user_prefs.has_children:
|
1225 |
-
if user_prefs.children_age == 'toddler':
|
1226 |
-
if user_prefs.experience_level == 'beginner':
|
1227 |
-
family_adjustment -= 0.15
|
1228 |
-
elif user_prefs.experience_level == 'intermediate':
|
1229 |
-
family_adjustment -= 0.10
|
1230 |
-
elif user_prefs.children_age == 'school_age':
|
1231 |
-
if user_prefs.experience_level == 'beginner':
|
1232 |
-
family_adjustment -= 0.10
|
1233 |
-
|
1234 |
-
# 生活方式匹配度
|
1235 |
-
lifestyle_adjustments = {
|
1236 |
-
'sedentary': -0.10 if care_level == 'HIGH' else 0,
|
1237 |
-
'moderate': 0,
|
1238 |
-
'active': 0.10 if care_level in ['HIGH', 'MODERATE'] else 0
|
1239 |
-
}
|
1240 |
-
lifestyle_adjustment = lifestyle_adjustments[user_prefs.lifestyle_activity]
|
1241 |
-
|
1242 |
-
# 整合所有評分因素
|
1243 |
-
final_score = base_score + time_adjustment + temperament_adjustment + \
|
1244 |
-
health_adjustment + family_adjustment + lifestyle_adjustment
|
1245 |
-
|
1246 |
-
# 確保最終分數在合理範圍內
|
1247 |
-
return max(0.15, min(1.0, final_score))
|
1248 |
-
|
1249 |
|
1250 |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
1251 |
"""
|
@@ -1355,343 +942,131 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
1355 |
return max(0.1, min(1.0, health_score))
|
1356 |
|
1357 |
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
|
1365 |
-
# noise_info = breed_noise_info[breed_name]
|
1366 |
-
# noise_level = noise_info['noise_level'].lower()
|
1367 |
-
# noise_notes = noise_info['noise_notes'].lower()
|
1368 |
-
|
1369 |
-
# # 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
|
1370 |
-
# base_scores = {
|
1371 |
-
# 'low': {
|
1372 |
-
# 'low': 1.0, # 安靜的狗對低容忍完美匹配
|
1373 |
-
# 'medium': 0.95, # 安靜的狗對一般容忍很好
|
1374 |
-
# 'high': 0.90 # 安靜的狗對高容忍當然可以
|
1375 |
-
# },
|
1376 |
-
# 'medium': {
|
1377 |
-
# 'low': 0.60, # 一般吠叫對低容忍較困難
|
1378 |
-
# 'medium': 0.90, # 一般吠叫對一般容忍可接受
|
1379 |
-
# 'high': 0.95 # 一般吠叫對高容忍很好
|
1380 |
-
# },
|
1381 |
-
# 'high': {
|
1382 |
-
# 'low': 0.25, # 愛叫的狗對低容忍極不適合
|
1383 |
-
# 'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
|
1384 |
-
# 'high': 0.90 # 愛叫的狗對高容忍可以接受
|
1385 |
-
# },
|
1386 |
-
# 'varies': {
|
1387 |
-
# 'low': 0.50, # 不確定的情況對低容忍風險較大
|
1388 |
-
# 'medium': 0.75, # 不確定的情況對一般容忍可嘗試
|
1389 |
-
# 'high': 0.85 # 不確定的情況對高容忍問題較小
|
1390 |
-
# }
|
1391 |
-
# }
|
1392 |
-
|
1393 |
-
# # 取得基礎分數
|
1394 |
-
# base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
|
1395 |
-
|
1396 |
-
# # 吠叫原因評估,根據環境調整懲罰程度
|
1397 |
-
# barking_penalties = {
|
1398 |
-
# 'separation anxiety': {
|
1399 |
-
# 'apartment': -0.30, # 在公寓對鄰居影響更大
|
1400 |
-
# 'house_small': -0.25,
|
1401 |
-
# 'house_large': -0.20
|
1402 |
-
# },
|
1403 |
-
# 'excessive barking': {
|
1404 |
-
# 'apartment': -0.25,
|
1405 |
-
# 'house_small': -0.20,
|
1406 |
-
# 'house_large': -0.15
|
1407 |
-
# },
|
1408 |
-
# 'territorial': {
|
1409 |
-
# 'apartment': -0.20, # 在公寓更容易被觸發
|
1410 |
-
# 'house_small': -0.15,
|
1411 |
-
# 'house_large': -0.10
|
1412 |
-
# },
|
1413 |
-
# 'alert barking': {
|
1414 |
-
# 'apartment': -0.15, # 公寓環境刺激較多
|
1415 |
-
# 'house_small': -0.10,
|
1416 |
-
# 'house_large': -0.08
|
1417 |
-
# },
|
1418 |
-
# 'attention seeking': {
|
1419 |
-
# 'apartment': -0.15,
|
1420 |
-
# 'house_small': -0.12,
|
1421 |
-
# 'house_large': -0.10
|
1422 |
-
# }
|
1423 |
-
# }
|
1424 |
-
|
1425 |
-
# # 計算環境相關的吠叫懲罰
|
1426 |
-
# living_space = user_prefs.living_space
|
1427 |
-
# barking_penalty = 0
|
1428 |
-
# for trigger, penalties in barking_penalties.items():
|
1429 |
-
# if trigger in noise_notes:
|
1430 |
-
# barking_penalty += penalties.get(living_space, -0.15)
|
1431 |
|
1432 |
-
|
1433 |
-
|
1434 |
-
|
1435 |
-
# # 孩童年齡相關調整
|
1436 |
-
# child_age_adjustments = {
|
1437 |
-
# 'toddler': {
|
1438 |
-
# 'high': -0.20, # 幼童對吵鬧更敏感
|
1439 |
-
# 'medium': -0.15,
|
1440 |
-
# 'low': -0.05
|
1441 |
-
# },
|
1442 |
-
# 'school_age': {
|
1443 |
-
# 'high': -0.15,
|
1444 |
-
# 'medium': -0.10,
|
1445 |
-
# 'low': -0.05
|
1446 |
-
# },
|
1447 |
-
# 'teenager': {
|
1448 |
-
# 'high': -0.10,
|
1449 |
-
# 'medium': -0.05,
|
1450 |
-
# 'low': -0.02
|
1451 |
-
# }
|
1452 |
-
# }
|
1453 |
-
|
1454 |
-
# # 根據孩童年齡和噪音等級調整
|
1455 |
-
# age_adj = child_age_adjustments.get(user_prefs.children_age,
|
1456 |
-
# child_age_adjustments['school_age'])
|
1457 |
-
# special_adjustments += age_adj.get(noise_level, -0.10)
|
1458 |
|
1459 |
-
|
1460 |
-
|
1461 |
-
|
1462 |
-
|
1463 |
-
|
1464 |
-
|
1465 |
-
|
1466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1467 |
|
1468 |
-
|
1469 |
-
|
1470 |
-
# if user_prefs.living_space == 'apartment':
|
1471 |
-
# special_adjustments -= 0.15
|
1472 |
-
# elif user_prefs.living_space == 'house_small':
|
1473 |
-
# special_adjustments -= 0.10
|
1474 |
-
# else:
|
1475 |
-
# special_adjustments -= 0.05
|
1476 |
|
1477 |
-
|
1478 |
-
|
1479 |
-
|
1480 |
-
|
1481 |
-
|
1482 |
-
|
1483 |
-
"""
|
1484 |
-
計算品種噪音特性與使用者需求的匹配分數
|
1485 |
-
|
1486 |
-
這個函數建立了一個細緻的噪音評估系統,考慮多個關鍵因素:
|
1487 |
-
1. 品種的基本吠叫傾向
|
1488 |
-
2. 居住環境對噪音的敏感度
|
1489 |
-
3. 吠叫的情境和原因
|
1490 |
-
4. 鄰居影響的考量
|
1491 |
-
5. 家庭成員的噪音承受度
|
1492 |
-
6. 訓練可能性的評估
|
1493 |
-
|
1494 |
-
特別注意:
|
1495 |
-
- 公寓環境的嚴格標準
|
1496 |
-
- 有幼童時的特殊考量
|
1497 |
-
- 獨處時間的影響
|
1498 |
-
- 品種的可訓練性
|
1499 |
-
|
1500 |
-
Parameters:
|
1501 |
-
-----------
|
1502 |
-
breed_info: 包含品種特性的字典,包括吠叫傾向和訓練難度
|
1503 |
-
user_prefs: 使用者偏好設定,包含噪音容忍度和環境因素
|
1504 |
-
|
1505 |
-
Returns:
|
1506 |
-
--------
|
1507 |
-
float: 0.0-1.0 之間的匹配��數,分數越高表示噪音特性越符合需求
|
1508 |
-
"""
|
1509 |
-
|
1510 |
-
# 提取基本資訊
|
1511 |
-
noise_level = breed_info.get('Noise Level', 'MODERATE').upper()
|
1512 |
-
barking_tendency = breed_info.get('Barking Tendency', 'MODERATE').upper()
|
1513 |
-
trainability = breed_info.get('Trainability', 'MODERATE').upper()
|
1514 |
-
temperament = breed_info.get('Temperament', '').lower()
|
1515 |
-
|
1516 |
-
# 基礎噪音評分矩陣 - 考慮環境和噪音容忍度
|
1517 |
-
base_noise_scores = {
|
1518 |
-
"LOW": {
|
1519 |
-
"apartment": {
|
1520 |
-
"low": 1.0, # 安靜的狗在公寓最理想
|
1521 |
-
"medium": 0.95,
|
1522 |
-
"high": 0.90
|
1523 |
-
},
|
1524 |
-
"house_small": {
|
1525 |
-
"low": 0.95,
|
1526 |
-
"medium": 0.90,
|
1527 |
-
"high": 0.85
|
1528 |
-
},
|
1529 |
-
"house_large": {
|
1530 |
-
"low": 0.90,
|
1531 |
-
"medium": 0.85,
|
1532 |
-
"high": 0.80 # 太安靜可能不夠警戒
|
1533 |
-
}
|
1534 |
},
|
1535 |
-
|
1536 |
-
|
1537 |
-
|
1538 |
-
|
1539 |
-
"high": 0.85
|
1540 |
-
},
|
1541 |
-
"house_small": {
|
1542 |
-
"low": 0.70,
|
1543 |
-
"medium": 0.85,
|
1544 |
-
"high": 0.90
|
1545 |
-
},
|
1546 |
-
"house_large": {
|
1547 |
-
"low": 0.75,
|
1548 |
-
"medium": 0.90,
|
1549 |
-
"high": 0.95
|
1550 |
-
}
|
1551 |
},
|
1552 |
-
|
1553 |
-
|
1554 |
-
|
1555 |
-
|
1556 |
-
|
1557 |
-
|
1558 |
-
|
1559 |
-
|
1560 |
-
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
1565 |
-
|
1566 |
-
"high": 0.80
|
1567 |
-
}
|
1568 |
}
|
1569 |
}
|
1570 |
-
|
1571 |
-
#
|
1572 |
-
|
1573 |
-
|
1574 |
-
|
1575 |
-
|
1576 |
-
|
1577 |
-
|
1578 |
-
|
1579 |
-
|
1580 |
-
|
1581 |
-
|
1582 |
-
|
1583 |
-
|
1584 |
-
'
|
1585 |
-
'
|
1586 |
-
|
1587 |
-
'territorial': {
|
1588 |
-
'apartment': -0.20,
|
1589 |
-
'house_small': -0.15,
|
1590 |
-
'house_large': -0.10
|
1591 |
},
|
1592 |
-
'
|
1593 |
-
'
|
1594 |
-
'
|
1595 |
-
'
|
1596 |
},
|
1597 |
-
'
|
1598 |
-
'
|
1599 |
-
'
|
1600 |
-
'
|
1601 |
}
|
1602 |
}
|
1603 |
|
1604 |
-
|
1605 |
-
|
1606 |
-
|
1607 |
-
|
1608 |
-
return context_score
|
1609 |
-
|
1610 |
-
# 計算吠叫情境的影響
|
1611 |
-
barking_context_adjustment = evaluate_barking_context(temperament, user_prefs.living_space)
|
1612 |
-
|
1613 |
-
# 訓練可能性評估
|
1614 |
-
trainability_adjustments = {
|
1615 |
-
"HIGH": 0.10, # 容易訓練可以改善吠叫問題
|
1616 |
-
"MODERATE": 0.05,
|
1617 |
-
"LOW": -0.05 # 難以訓練則較難改善
|
1618 |
-
}
|
1619 |
-
trainability_adjustment = trainability_adjustments.get(trainability, 0)
|
1620 |
-
|
1621 |
-
# 家庭環境考量
|
1622 |
-
family_adjustment = 0
|
1623 |
-
if user_prefs.has_children:
|
1624 |
-
child_age_factors = {
|
1625 |
-
'toddler': -0.20, # 幼童需要安靜環境
|
1626 |
-
'school_age': -0.15,
|
1627 |
-
'teenager': -0.10
|
1628 |
-
}
|
1629 |
-
family_adjustment = child_age_factors.get(user_prefs.children_age, -0.15)
|
1630 |
-
|
1631 |
-
# 根據噪音等級調整影響程度
|
1632 |
-
if noise_level == "HIGH":
|
1633 |
-
family_adjustment *= 1.5
|
1634 |
-
elif noise_level == "LOW":
|
1635 |
-
family_adjustment *= 0.5
|
1636 |
-
|
1637 |
-
# 獨處時間的影響
|
1638 |
-
alone_time_adjustment = 0
|
1639 |
-
if user_prefs.home_alone_time > 6:
|
1640 |
-
if 'separation anxiety' in temperament or noise_level == "HIGH":
|
1641 |
-
alone_time_adjustment = -0.15
|
1642 |
-
elif noise_level == "MODERATE":
|
1643 |
-
alone_time_adjustment = -0.10
|
1644 |
-
|
1645 |
-
# 鄰居影響評估(特別是公寓環境)
|
1646 |
-
neighbor_adjustment = 0
|
1647 |
-
if user_prefs.living_space == "apartment":
|
1648 |
-
if noise_level == "HIGH":
|
1649 |
-
neighbor_adjustment = -0.15
|
1650 |
-
elif noise_level == "MODERATE":
|
1651 |
-
neighbor_adjustment = -0.10
|
1652 |
-
|
1653 |
-
# 樓層因素
|
1654 |
-
if user_prefs.living_floor > 1:
|
1655 |
-
neighbor_adjustment -= min(0.10, (user_prefs.living_floor - 1) * 0.02)
|
1656 |
-
|
1657 |
-
# 整合所有評分因素
|
1658 |
-
final_score = base_score + barking_context_adjustment + trainability_adjustment + \
|
1659 |
-
family_adjustment + alone_time_adjustment + neighbor_adjustment
|
1660 |
-
|
1661 |
-
# 確保最終分數在合理範圍內
|
1662 |
-
return max(0.15, min(1.0, final_score))
|
1663 |
-
|
1664 |
-
except Exception as e:
|
1665 |
-
print(f"Error calculating compatibility score: {str(e)}")
|
1666 |
-
return 60.0 # 返回最低分數作為默認值
|
1667 |
-
|
1668 |
-
|
1669 |
-
def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
|
1670 |
-
"""計算品種與環境的適應性加成"""
|
1671 |
-
adaptability_score = 0.0
|
1672 |
-
description = breed_info.get('Description', '').lower()
|
1673 |
-
temperament = breed_info.get('Temperament', '').lower()
|
1674 |
-
|
1675 |
-
# 環境適應性評估
|
1676 |
-
if user_prefs.living_space == 'apartment':
|
1677 |
-
if 'adaptable' in temperament or 'apartment' in description:
|
1678 |
-
adaptability_score += 0.1
|
1679 |
-
if breed_info.get('Size') == 'Small':
|
1680 |
-
adaptability_score += 0.05
|
1681 |
-
elif user_prefs.living_space == 'house_large':
|
1682 |
-
if 'active' in temperament or 'energetic' in description:
|
1683 |
-
adaptability_score += 0.1
|
1684 |
-
|
1685 |
-
# 氣候適應性
|
1686 |
-
if user_prefs.climate in description or user_prefs.climate in temperament:
|
1687 |
-
adaptability_score += 0.05
|
1688 |
|
1689 |
-
|
1690 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1691 |
|
1692 |
-
|
1693 |
-
"""計算品種的整體評分與匹配度"""
|
1694 |
-
try:
|
1695 |
print("\n=== 開始計算品種相容性分數 ===")
|
1696 |
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
|
1697 |
print(f"品種信息: {breed_info}")
|
@@ -1699,46 +1074,58 @@ def calculate_breed_matching(breed_info: dict, user_prefs: UserPreferences) -> d
|
|
1699 |
|
1700 |
# 計算所有基礎分數並整合到字典中
|
1701 |
scores = {
|
1702 |
-
'space': calculate_space_score(
|
|
|
|
|
|
|
|
|
|
|
1703 |
'exercise': calculate_exercise_score(
|
1704 |
breed_info.get('Exercise Needs', 'Moderate'),
|
1705 |
user_prefs.exercise_time,
|
1706 |
-
user_prefs
|
1707 |
),
|
1708 |
'grooming': calculate_grooming_score(
|
1709 |
breed_info.get('Grooming Needs', 'Moderate'),
|
1710 |
user_prefs.grooming_commitment.lower(),
|
1711 |
breed_info['Size']
|
1712 |
),
|
1713 |
-
'experience': calculate_experience_score(
|
|
|
|
|
|
|
|
|
1714 |
'health': calculate_health_score(
|
1715 |
breed_info.get('Breed', ''),
|
1716 |
user_prefs
|
1717 |
),
|
1718 |
'noise': calculate_noise_score(
|
1719 |
-
breed_info,
|
1720 |
user_prefs
|
1721 |
)
|
1722 |
}
|
1723 |
|
1724 |
-
|
1725 |
-
|
1726 |
-
|
|
|
|
|
|
|
1727 |
# 計算環境適應性加成
|
1728 |
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
|
1729 |
-
|
1730 |
# 整合最終分數和加成
|
1731 |
final_score = (final_score * 0.9) + (adaptability_bonus * 0.1)
|
1732 |
final_score = amplify_score_extreme(final_score)
|
1733 |
-
|
1734 |
# 更新並返回完整的評分結果
|
1735 |
scores.update({
|
1736 |
'overall': final_score,
|
1737 |
'adaptability_bonus': adaptability_bonus
|
1738 |
})
|
1739 |
-
|
1740 |
return scores
|
1741 |
-
|
1742 |
except Exception as e:
|
1743 |
print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
|
1744 |
print(f"錯誤類型: {type(e).__name__}")
|
@@ -1748,328 +1135,149 @@ def calculate_breed_matching(breed_info: dict, user_prefs: UserPreferences) -> d
|
|
1748 |
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|
1749 |
|
1750 |
|
1751 |
-
|
1752 |
-
|
1753 |
-
|
1754 |
-
|
1755 |
-
|
1756 |
-
|
1757 |
-
#
|
1758 |
-
|
1759 |
-
|
1760 |
-
|
1761 |
-
|
1762 |
-
|
1763 |
-
|
1764 |
-
|
1765 |
-
|
1766 |
-
|
|
|
|
|
|
|
1767 |
|
1768 |
-
|
1769 |
-
# exercise_multiplier = 1.0
|
1770 |
-
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1771 |
-
# if exercise_needs == 'VERY HIGH':
|
1772 |
-
# if user_prefs.exercise_time < 60:
|
1773 |
-
# exercise_multiplier = 0.3 # 嚴重不足
|
1774 |
-
# elif user_prefs.exercise_time > 150:
|
1775 |
-
# exercise_multiplier = 1.5 # 完美匹配
|
1776 |
-
# elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
1777 |
-
# exercise_multiplier = 0.5 # 運動過度
|
1778 |
|
1779 |
-
# return space_multiplier, exercise_multiplier
|
1780 |
|
1781 |
-
|
1782 |
-
|
1783 |
-
|
1784 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1785 |
|
1786 |
-
#
|
1787 |
-
|
1788 |
-
|
1789 |
-
|
1790 |
-
|
1791 |
-
|
1792 |
-
|
1793 |
-
|
1794 |
-
|
1795 |
-
#
|
1796 |
-
|
1797 |
-
# # 取得特徵調整係數
|
1798 |
-
# space_mult, exercise_mult = evaluate_key_features()
|
1799 |
-
# exp_mult = evaluate_experience()
|
1800 |
|
1801 |
-
|
1802 |
-
# adjusted_scores = {
|
1803 |
-
# 'space': scores['space'] * space_mult,
|
1804 |
-
# 'exercise': scores['exercise'] * exercise_mult,
|
1805 |
-
# 'experience': scores['experience'] * exp_mult,
|
1806 |
-
# 'grooming': scores['grooming'],
|
1807 |
-
# 'health': scores['health'],
|
1808 |
-
# 'noise': scores['noise']
|
1809 |
-
# }
|
1810 |
|
1811 |
-
#
|
1812 |
-
|
1813 |
-
|
1814 |
-
|
1815 |
-
|
1816 |
-
|
1817 |
-
|
1818 |
-
|
1819 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1820 |
|
1821 |
-
#
|
1822 |
-
|
1823 |
-
|
1824 |
-
# weights['noise'] *= 1.3
|
1825 |
-
|
1826 |
-
# if abs(user_prefs.exercise_time - 120) > 60: # 運動時間極端情況
|
1827 |
-
# weights['exercise'] *= 1.4
|
1828 |
|
1829 |
-
#
|
1830 |
-
|
1831 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1832 |
|
1833 |
-
#
|
1834 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1835 |
|
1836 |
-
#
|
1837 |
-
|
|
|
|
|
1838 |
|
1839 |
-
#
|
1840 |
-
|
1841 |
|
|
|
|
|
|
|
1842 |
|
1843 |
-
#
|
1844 |
-
|
1845 |
-
# 改進的分數轉換函數
|
1846 |
-
# 提供更大的分數範圍和更明顯的差異
|
1847 |
-
|
1848 |
-
# 轉換邏輯:
|
1849 |
-
# - 極差匹配 (0.0-0.3) -> 60-68%
|
1850 |
-
# - 較差匹配 (0.3-0.5) -> 68-75%
|
1851 |
-
# - 中等匹配 (0.5-0.7) -> 75-85%
|
1852 |
-
# - 良好匹配 (0.7-0.85) -> 85-92%
|
1853 |
-
# - 優秀匹配 (0.85-1.0) -> 92-95%
|
1854 |
-
# """
|
1855 |
-
# if score < 0.3:
|
1856 |
-
# # 極差匹配:快速線性增長
|
1857 |
-
# return 0.60 + (score / 0.3) * 0.08
|
1858 |
-
# elif score < 0.5:
|
1859 |
-
# # 較差匹配:緩慢增長
|
1860 |
-
# position = (score - 0.3) / 0.2
|
1861 |
-
# return 0.68 + position * 0.07
|
1862 |
-
# elif score < 0.7:
|
1863 |
-
# # 中等匹配:穩定線性增長
|
1864 |
-
# position = (score - 0.5) / 0.2
|
1865 |
-
# return 0.75 + position * 0.10
|
1866 |
-
# elif score < 0.85:
|
1867 |
-
# # 良好匹配:加速增長
|
1868 |
-
# position = (score - 0.7) / 0.15
|
1869 |
-
# return 0.85 + position * 0.07
|
1870 |
-
# else:
|
1871 |
-
# # 優秀匹配:最後衝刺
|
1872 |
-
# position = (score - 0.85) / 0.15
|
1873 |
-
# return 0.92 + position * 0.03
|
1874 |
-
|
1875 |
|
1876 |
-
|
1877 |
-
|
1878 |
-
計算品種與使用者的整體相容性分數
|
1879 |
-
|
1880 |
-
這是推薦系統的核心評分函數,負責:
|
1881 |
-
1. 智能整合各面向評分
|
1882 |
-
2. 動態調整評分權重
|
1883 |
-
3. 處理關鍵條件的優先級
|
1884 |
-
4. 產生最終的匹配分數
|
1885 |
-
|
1886 |
-
評分策略:
|
1887 |
-
- 基礎分數:由各項指標的加權平均獲得
|
1888 |
-
- 動態權重:根據用戶情況動態調整各項權重
|
1889 |
-
- 關鍵條件:某些條件不滿足會顯著降低總分
|
1890 |
-
- 加成系統:特殊匹配會提供額外加分
|
1891 |
-
|
1892 |
-
Parameters:
|
1893 |
-
-----------
|
1894 |
-
scores: 包含各項評分的字典
|
1895 |
-
user_prefs: 使用者偏好設定
|
1896 |
-
breed_info: 品種特性信息
|
1897 |
|
1898 |
-
|
1899 |
-
|
1900 |
-
float: 60.0-95.0 之間的最終匹配分數
|
1901 |
-
"""
|
1902 |
-
def calculate_dynamic_weights() -> dict:
|
1903 |
-
"""計算動態權重分配"""
|
1904 |
-
# 基礎權重設定
|
1905 |
-
weights = {
|
1906 |
-
'space': 0.20,
|
1907 |
-
'exercise': 0.20,
|
1908 |
-
'experience': 0.15,
|
1909 |
-
'grooming': 0.15,
|
1910 |
-
'health': 0.15,
|
1911 |
-
'noise': 0.15
|
1912 |
-
}
|
1913 |
-
|
1914 |
-
# 公寓住戶權重調整
|
1915 |
-
if user_prefs.living_space == "apartment":
|
1916 |
-
weights['space'] *= 1.3
|
1917 |
-
weights['noise'] *= 1.3
|
1918 |
-
weights['exercise'] *= 0.8
|
1919 |
-
|
1920 |
-
# 有幼童時的權重調整
|
1921 |
-
if user_prefs.has_children and user_prefs.children_age == 'toddler':
|
1922 |
-
weights['experience'] *= 1.3
|
1923 |
-
weights['noise'] *= 1.2
|
1924 |
-
weights['health'] *= 1.2
|
1925 |
-
|
1926 |
-
# 新手飼主的權重調整
|
1927 |
-
if user_prefs.experience_level == 'beginner':
|
1928 |
-
weights['experience'] *= 1.4
|
1929 |
-
weights['health'] *= 1.2
|
1930 |
-
weights['grooming'] *= 1.2
|
1931 |
-
|
1932 |
-
# 健康敏感度的權重調整
|
1933 |
-
if user_prefs.health_sensitivity == 'high':
|
1934 |
-
weights['health'] *= 1.3
|
1935 |
-
|
1936 |
-
# 運動時間極端情況的權重調整
|
1937 |
-
if abs(user_prefs.exercise_time - 120) > 60:
|
1938 |
-
weights['exercise'] *= 1.3
|
1939 |
-
|
1940 |
-
# 正規化權重
|
1941 |
-
total = sum(weights.values())
|
1942 |
-
return {k: v/total for k, v in weights.items()}
|
1943 |
-
|
1944 |
-
def calculate_critical_factors() -> float:
|
1945 |
-
"""評估關鍵因素的影響"""
|
1946 |
-
critical_score = 1.0
|
1947 |
-
|
1948 |
-
# 空間關鍵條件
|
1949 |
-
if user_prefs.living_space == "apartment":
|
1950 |
-
if breed_info['Size'] == 'Giant':
|
1951 |
-
critical_score *= 0.7
|
1952 |
-
elif breed_info['Size'] == 'Large':
|
1953 |
-
critical_score *= 0.8
|
1954 |
-
|
1955 |
-
# 運動需求關鍵條件
|
1956 |
-
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1957 |
-
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
|
1958 |
-
critical_score *= 0.75
|
1959 |
-
elif exercise_needs == 'HIGH' and user_prefs.exercise_time < 45:
|
1960 |
-
critical_score *= 0.8
|
1961 |
-
|
1962 |
-
# 新手飼主關鍵條件
|
1963 |
-
if user_prefs.experience_level == 'beginner':
|
1964 |
-
if 'aggressive' in breed_info.get('Temperament', '').lower():
|
1965 |
-
critical_score *= 0.7
|
1966 |
-
elif 'dominant' in breed_info.get('Temperament', '').lower():
|
1967 |
-
critical_score *= 0.8
|
1968 |
-
|
1969 |
-
# 噪音關鍵條件
|
1970 |
-
if user_prefs.living_space == "apartment" and \
|
1971 |
-
breed_info.get('Noise Level', 'MODERATE').upper() == 'HIGH' and \
|
1972 |
-
user_prefs.noise_tolerance == 'low':
|
1973 |
-
critical_score *= 0.7
|
1974 |
-
|
1975 |
-
return critical_score
|
1976 |
|
1977 |
-
def calculate_bonus_factors() -> float:
|
1978 |
-
"""計算額外加分因素"""
|
1979 |
-
bonus = 1.0
|
1980 |
-
temperament = breed_info.get('Temperament', '').lower()
|
1981 |
-
|
1982 |
-
# 完美匹配加分
|
1983 |
-
perfect_matches = 0
|
1984 |
-
for score in scores.values():
|
1985 |
-
if score > 0.9:
|
1986 |
-
perfect_matches += 1
|
1987 |
-
|
1988 |
-
if perfect_matches >= 3:
|
1989 |
-
bonus += 0.05
|
1990 |
-
|
1991 |
-
# 特殊匹配加分
|
1992 |
-
if user_prefs.has_children and 'good with children' in temperament:
|
1993 |
-
bonus += 0.03
|
1994 |
-
|
1995 |
-
if user_prefs.living_space == "apartment" and 'adaptable' in temperament:
|
1996 |
-
bonus += 0.03
|
1997 |
-
|
1998 |
-
if user_prefs.experience_level == 'beginner' and 'easy to train' in temperament:
|
1999 |
-
bonus += 0.03
|
2000 |
-
|
2001 |
-
return min(1.15, bonus)
|
2002 |
-
|
2003 |
-
# 計算動態權重
|
2004 |
-
weights = calculate_dynamic_weights()
|
2005 |
-
|
2006 |
-
# 計算基礎加權分數
|
2007 |
-
base_score = sum(scores[k] * weights[k] for k in scores.keys())
|
2008 |
-
|
2009 |
-
# 應用關鍵因素
|
2010 |
-
critical_factor = calculate_critical_factors()
|
2011 |
-
|
2012 |
-
# 計算加分
|
2013 |
-
bonus_factor = calculate_bonus_factors()
|
2014 |
-
|
2015 |
-
# 計算最終原始分數
|
2016 |
-
raw_score = base_score * critical_factor * bonus_factor
|
2017 |
-
|
2018 |
-
# 轉換為最終分數(60-95範圍)
|
2019 |
-
final_score = 60 + (raw_score * 35)
|
2020 |
-
|
2021 |
-
# 確保分數在合理範圍內並保留兩位小數
|
2022 |
-
return round(max(60.0, min(95.0, final_score)), 2)
|
2023 |
-
|
2024 |
|
2025 |
def amplify_score_extreme(score: float) -> float:
|
2026 |
"""
|
2027 |
-
|
2028 |
-
|
2029 |
-
這個函數負責:
|
2030 |
-
1. 將內部計算的原始分數轉換為更有意義的最終分數
|
2031 |
-
2. 確保分數分布更自然且有區別性
|
2032 |
-
3. 突出極佳和極差的匹配
|
2033 |
-
4. 避免分數過度集中在中間區域
|
2034 |
|
2035 |
-
|
2036 |
-
-
|
2037 |
-
-
|
2038 |
-
-
|
2039 |
-
-
|
2040 |
-
-
|
2041 |
-
- 不推薦匹配(0-0.25):轉換為 60-65 分
|
2042 |
-
|
2043 |
-
Parameters:
|
2044 |
-
-----------
|
2045 |
-
score: 原始相容性分數(0.0-1.0)
|
2046 |
-
|
2047 |
-
Returns:
|
2048 |
-
--------
|
2049 |
-
float: 轉換後的最終分數(60.0-95.0)
|
2050 |
"""
|
2051 |
-
|
2052 |
-
|
2053 |
-
|
2054 |
-
|
2055 |
-
|
2056 |
-
|
2057 |
-
|
2058 |
-
|
2059 |
-
|
2060 |
-
|
2061 |
-
|
2062 |
-
|
2063 |
-
|
2064 |
-
|
2065 |
-
|
2066 |
-
position = (score - 0.40) / 0.15
|
2067 |
-
return 70.0 + (position * 5.0)
|
2068 |
-
elif score >= 0.25:
|
2069 |
-
# 勉強匹配:65-70分
|
2070 |
-
position = (score - 0.25) / 0.15
|
2071 |
-
return 65.0 + (position * 5.0)
|
2072 |
else:
|
2073 |
-
#
|
2074 |
-
position = score / 0.
|
2075 |
-
return
|
|
|
3 |
from breed_noise_info import breed_noise_info
|
4 |
import traceback
|
5 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
@dataclass
|
8 |
class UserPreferences:
|
9 |
+
|
10 |
+
"""使用者偏好設定的資料結構"""
|
11 |
+
living_space: str # "apartment", "house_small", "house_large"
|
12 |
+
yard_access: str # "no_yard", "shared_yard", "private_yard"
|
13 |
+
exercise_time: int # minutes per day
|
14 |
+
exercise_type: str # "light_walks", "moderate_activity", "active_training"
|
15 |
+
grooming_commitment: str # "low", "medium", "high"
|
16 |
+
experience_level: str # "beginner", "intermediate", "advanced"
|
17 |
+
time_availability: str # "limited", "moderate", "flexible"
|
18 |
has_children: bool
|
19 |
+
children_age: str # "toddler", "school_age", "teenager"
|
20 |
+
noise_tolerance: str # "low", "medium", "high"
|
21 |
space_for_play: bool
|
22 |
other_pets: bool
|
23 |
+
climate: str # "cold", "moderate", "hot"
|
24 |
+
health_sensitivity: str = "medium"
|
25 |
+
barking_acceptance: str = None
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def __post_init__(self):
|
28 |
+
"""在初始化後運行,用於設置派生值"""
|
29 |
if self.barking_acceptance is None:
|
30 |
self.barking_acceptance = self.noise_tolerance
|
31 |
|
|
|
416 |
raise KeyError("Size information missing")
|
417 |
|
418 |
|
419 |
+
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
|
420 |
+
"""
|
421 |
+
主要改進:
|
422 |
+
1. 更均衡的基礎分數分配
|
423 |
+
2. 更細緻的空間需求評估
|
424 |
+
3. 強化運動需求與空間的關聯性
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
"""
|
426 |
+
# 重新設計基礎分數矩陣,降低普遍分數以增加區別度
|
427 |
+
base_scores = {
|
|
|
|
|
|
|
|
|
|
|
428 |
"Small": {
|
429 |
+
"apartment": 0.85, # 降低滿分機會
|
430 |
+
"house_small": 0.80, # 小型犬不應在大空間得到太高分數
|
431 |
+
"house_large": 0.75 # 避免小型犬總是得到最高分
|
432 |
},
|
433 |
"Medium": {
|
434 |
+
"apartment": 0.45, # 維持對公寓環境的限制
|
435 |
+
"house_small": 0.75, # 適中的分數
|
436 |
+
"house_large": 0.85 # 給予合理的獎勵
|
437 |
},
|
438 |
"Large": {
|
439 |
+
"apartment": 0.15, # 加重對大型犬在公寓的限制
|
440 |
+
"house_small": 0.65, # 中等適合度
|
441 |
+
"house_large": 0.90 # 最適合的環境
|
442 |
},
|
443 |
"Giant": {
|
444 |
+
"apartment": 0.10, # 更嚴格的限制
|
445 |
+
"house_small": 0.45, # 顯著的空間限制
|
446 |
+
"house_large": 0.95 # 最理想的配對
|
447 |
}
|
448 |
}
|
449 |
|
450 |
+
# 取得基礎分數
|
451 |
+
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
|
452 |
+
|
453 |
+
# 運動需求相關的調整更加動態
|
454 |
+
exercise_adjustments = {
|
455 |
+
"Very High": {
|
456 |
+
"apartment": -0.25, # 加重在受限空間的懲罰
|
457 |
+
"house_small": -0.15,
|
458 |
+
"house_large": -0.05
|
459 |
+
},
|
460 |
+
"High": {
|
461 |
+
"apartment": -0.20,
|
462 |
+
"house_small": -0.10,
|
463 |
+
"house_large": 0
|
464 |
+
},
|
465 |
+
"Moderate": {
|
466 |
+
"apartment": -0.10,
|
467 |
+
"house_small": -0.05,
|
468 |
+
"house_large": 0
|
469 |
+
},
|
470 |
+
"Low": {
|
471 |
+
"apartment": 0.05, # 低運動需求在小空間反而有優勢
|
472 |
+
"house_small": 0,
|
473 |
+
"house_large": -0.05 # 輕微降低評分,因為空間可能過大
|
474 |
+
}
|
|
|
|
|
|
|
|
|
475 |
}
|
476 |
|
477 |
+
# 根據空間類型獲取運動需求調整
|
478 |
+
adjustment = exercise_adjustments.get(exercise_needs,
|
479 |
+
exercise_adjustments["Moderate"])[living_space]
|
480 |
+
|
481 |
+
# 院子效益根據品種大小和運動需求動態調整
|
482 |
+
if has_yard:
|
483 |
+
yard_bonus = {
|
484 |
+
"Giant": 0.20,
|
485 |
+
"Large": 0.15,
|
486 |
+
"Medium": 0.10,
|
487 |
+
"Small": 0.05
|
488 |
+
}.get(size, 0.10)
|
489 |
+
|
490 |
+
# 運動需求會影響院子的重要性
|
491 |
+
if exercise_needs in ["Very High", "High"]:
|
492 |
+
yard_bonus *= 1.2
|
493 |
+
elif exercise_needs == "Low":
|
494 |
+
yard_bonus *= 0.8
|
|
|
|
|
|
|
|
|
|
|
495 |
|
496 |
+
current_score = base_score + adjustment + yard_bonus
|
497 |
+
else:
|
498 |
+
current_score = base_score + adjustment
|
499 |
+
|
500 |
+
# 確保分數在合理範圍內,但避免極端值
|
501 |
+
return min(0.95, max(0.15, current_score))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
502 |
|
503 |
|
504 |
+
def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
|
505 |
"""
|
506 |
+
精確評估品種運動需求與使用者運動條件的匹配度
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
|
508 |
Parameters:
|
|
|
509 |
breed_needs: 品種的運動需求等級
|
510 |
exercise_time: 使用者能提供的運動時間(分鐘)
|
511 |
+
exercise_type: 使用者偏好的運動類型
|
512 |
|
513 |
Returns:
|
514 |
+
float: -0.2 到 0.2 之間的匹配分數
|
|
|
515 |
"""
|
516 |
+
# 定義更細緻的運動需求等級
|
517 |
exercise_levels = {
|
518 |
'VERY HIGH': {
|
519 |
'min': 120,
|
520 |
'ideal': 150,
|
521 |
'max': 180,
|
522 |
+
'intensity': 'high',
|
523 |
+
'sessions': 'multiple',
|
524 |
+
'preferred_types': ['active_training', 'intensive_exercise']
|
525 |
},
|
526 |
'HIGH': {
|
527 |
'min': 90,
|
528 |
'ideal': 120,
|
529 |
'max': 150,
|
530 |
+
'intensity': 'moderate_high',
|
531 |
+
'sessions': 'multiple',
|
532 |
+
'preferred_types': ['active_training', 'moderate_activity']
|
533 |
},
|
534 |
+
'MODERATE HIGH': {
|
535 |
+
'min': 70,
|
536 |
'ideal': 90,
|
537 |
'max': 120,
|
538 |
+
'intensity': 'moderate',
|
539 |
+
'sessions': 'flexible',
|
540 |
+
'preferred_types': ['moderate_activity', 'active_training']
|
541 |
},
|
542 |
+
'MODERATE': {
|
543 |
+
'min': 45,
|
544 |
'ideal': 60,
|
545 |
'max': 90,
|
546 |
+
'intensity': 'moderate',
|
547 |
+
'sessions': 'flexible',
|
548 |
+
'preferred_types': ['moderate_activity', 'light_walks']
|
549 |
+
},
|
550 |
+
'MODERATE LOW': {
|
551 |
+
'min': 30,
|
552 |
+
'ideal': 45,
|
553 |
+
'max': 70,
|
554 |
+
'intensity': 'light_moderate',
|
555 |
+
'sessions': 'flexible',
|
556 |
+
'preferred_types': ['light_walks', 'moderate_activity']
|
557 |
+
},
|
558 |
+
'LOW': {
|
559 |
+
'min': 15,
|
560 |
+
'ideal': 30,
|
561 |
+
'max': 45,
|
562 |
+
'intensity': 'light',
|
563 |
+
'sessions': 'single',
|
564 |
+
'preferred_types': ['light_walks']
|
565 |
}
|
566 |
}
|
567 |
|
568 |
+
# 獲取品種的運動需求配置
|
569 |
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
|
570 |
|
571 |
+
# 計算時間匹配度(使用更平滑的評分曲線)
|
572 |
+
if exercise_time >= breed_level['ideal']:
|
573 |
+
if exercise_time > breed_level['max']:
|
574 |
+
# 運動時間過長,適度降分
|
575 |
+
time_score = 0.15 - (0.05 * (exercise_time - breed_level['max']) / 30)
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
else:
|
577 |
+
time_score = 0.15
|
578 |
+
elif exercise_time >= breed_level['min']:
|
579 |
+
# 在最小需求和理想需求之間,線性計算分數
|
580 |
+
time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
|
581 |
+
time_score = 0.05 + (time_ratio * 0.10)
|
582 |
+
else:
|
583 |
+
# 運動時間不足,根據差距程度扣分
|
584 |
+
time_ratio = max(0, exercise_time / breed_level['min'])
|
585 |
+
time_score = -0.15 * (1 - time_ratio)
|
586 |
+
|
587 |
+
# 運動類型匹配度評估
|
588 |
+
type_score = 0.0
|
589 |
+
if exercise_type in breed_level['preferred_types']:
|
590 |
+
type_score = 0.05
|
591 |
+
if exercise_type == breed_level['preferred_types'][0]:
|
592 |
+
type_score = 0.08 # 最佳匹配類型給予更高分數
|
593 |
+
|
594 |
+
return max(-0.2, min(0.2, time_score + type_score))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
|
596 |
|
597 |
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
|
|
|
725 |
return max(0.1, min(1.0, final_score))
|
726 |
|
727 |
|
728 |
+
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
"""
|
730 |
+
計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
731 |
|
732 |
+
重要改進:
|
733 |
+
1. 擴大基礎分數差異
|
734 |
+
2. 加重困難特徵的懲罰
|
735 |
+
3. 更細緻的品種特性評估
|
|
|
|
|
|
|
|
|
736 |
"""
|
737 |
+
# 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
|
738 |
+
base_scores = {
|
739 |
+
"High": {
|
740 |
+
"beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
|
741 |
+
"intermediate": 0.60, # 中級玩家仍需謹慎
|
742 |
+
"advanced": 1.0 # 資深者能完全勝任
|
|
|
|
|
|
|
|
|
743 |
},
|
744 |
+
"Moderate": {
|
745 |
+
"beginner": 0.35, # 適中難度對新手仍具挑戰
|
746 |
+
"intermediate": 0.80, # 中級玩家較適合
|
747 |
+
"advanced": 1.0 # 資深者完全勝任
|
748 |
},
|
749 |
+
"Low": {
|
750 |
+
"beginner": 0.90, # 新手友善品種
|
751 |
+
"intermediate": 0.95, # 中級玩家幾乎完全勝任
|
752 |
+
"advanced": 1.0 # 資深者完全勝任
|
753 |
}
|
754 |
}
|
755 |
|
756 |
+
# 取得基礎分數
|
757 |
+
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
758 |
|
759 |
+
temperament_lower = temperament.lower()
|
760 |
+
temperament_adjustments = 0.0
|
761 |
|
762 |
+
# 根據經驗等級設定不同的特徵評估標準
|
763 |
+
if user_experience == "beginner":
|
764 |
+
# 新手不適合的特徵 - 更嚴格的懲罰
|
|
|
|
|
|
|
765 |
difficult_traits = {
|
766 |
+
'stubborn': -0.30, # 固執性格嚴重影響新手
|
767 |
+
'independent': -0.25, # 獨立性高的品種不適合新手
|
768 |
+
'dominant': -0.25, # 支配性強的品種需要經驗處理
|
769 |
+
'strong-willed': -0.20, # 強勢性格需要技巧管理
|
770 |
+
'protective': -0.20, # 保護性強需要適當訓練
|
771 |
+
'aloof': -0.15, # 冷漠性格需要耐心培養
|
772 |
+
'energetic': -0.15, # 活潑好動需要經驗引導
|
773 |
+
'aggressive': -0.35 # 攻擊傾向極不適合新手
|
774 |
}
|
775 |
|
776 |
+
# 新手友善的特徵 - 適度的獎勵
|
777 |
+
easy_traits = {
|
778 |
+
'gentle': 0.05, # 溫和性格適合新手
|
779 |
+
'friendly': 0.05, # 友善性格容易相處
|
780 |
+
'eager to please': 0.08, # 願意服從較容易訓練
|
781 |
+
'patient': 0.05, # 耐心的特質有助於建立關係
|
782 |
+
'adaptable': 0.05, # 適應性強較容易照顧
|
783 |
+
'calm': 0.06 # 冷靜的性格較好掌握
|
784 |
}
|
785 |
|
786 |
+
# 計算特徵調整
|
787 |
+
for trait, penalty in difficult_traits.items():
|
788 |
+
if trait in temperament_lower:
|
789 |
+
temperament_adjustments += penalty
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
790 |
|
791 |
+
for trait, bonus in easy_traits.items():
|
792 |
+
if trait in temperament_lower:
|
793 |
+
temperament_adjustments += bonus
|
794 |
+
|
795 |
+
# 品種類型特殊評估
|
796 |
+
if 'terrier' in temperament_lower:
|
797 |
+
temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
|
798 |
+
elif 'working' in temperament_lower:
|
799 |
+
temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
|
800 |
+
elif 'guard' in temperament_lower:
|
801 |
+
temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
|
802 |
+
|
803 |
+
elif user_experience == "intermediate":
|
804 |
+
# 中級玩家的特徵評估
|
805 |
+
moderate_traits = {
|
806 |
+
'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
|
807 |
+
'independent': -0.10,
|
808 |
+
'intelligent': 0.08, # 聰明的特質可以好好發揮
|
809 |
+
'athletic': 0.06, # 運動能力可以適當訓練
|
810 |
+
'versatile': 0.07, # 多功能性可以開發
|
811 |
+
'protective': -0.08 # 保護性仍需注意
|
812 |
}
|
813 |
|
814 |
+
for trait, adjustment in moderate_traits.items():
|
815 |
+
if trait in temperament_lower:
|
816 |
+
temperament_adjustments += adjustment
|
817 |
|
818 |
+
else: # advanced
|
819 |
+
# 資深玩家能夠應對挑戰性特徵
|
820 |
+
advanced_traits = {
|
821 |
+
'stubborn': 0.05, # 困難特徵反而成為優勢
|
822 |
+
'independent': 0.05,
|
823 |
+
'intelligent': 0.10,
|
824 |
+
'protective': 0.05,
|
825 |
+
'strong-willed': 0.05
|
826 |
+
}
|
827 |
|
828 |
+
for trait, bonus in advanced_traits.items():
|
829 |
+
if trait in temperament_lower:
|
830 |
+
temperament_adjustments += bonus
|
831 |
|
832 |
+
# 確保最終分數範圍更大,讓差異更明顯
|
833 |
+
final_score = max(0.05, min(1.0, score + temperament_adjustments))
|
834 |
|
835 |
+
return final_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
836 |
|
837 |
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
838 |
"""
|
|
|
942 |
return max(0.1, min(1.0, health_score))
|
943 |
|
944 |
|
945 |
+
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
|
946 |
+
"""
|
947 |
+
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
|
948 |
+
"""
|
949 |
+
if breed_name not in breed_noise_info:
|
950 |
+
return 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
951 |
|
952 |
+
noise_info = breed_noise_info[breed_name]
|
953 |
+
noise_level = noise_info['noise_level'].lower()
|
954 |
+
noise_notes = noise_info['noise_notes'].lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
955 |
|
956 |
+
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
|
957 |
+
base_scores = {
|
958 |
+
'low': {
|
959 |
+
'low': 1.0, # 安靜的狗對低容忍完美匹配
|
960 |
+
'medium': 0.95, # 安靜的狗對一般容忍很好
|
961 |
+
'high': 0.90 # 安靜的狗對高容忍當然可以
|
962 |
+
},
|
963 |
+
'medium': {
|
964 |
+
'low': 0.60, # 一般吠叫對低容忍較困難
|
965 |
+
'medium': 0.90, # 一般吠叫對一般容忍可接受
|
966 |
+
'high': 0.95 # 一般吠叫對高容忍很好
|
967 |
+
},
|
968 |
+
'high': {
|
969 |
+
'low': 0.25, # 愛叫的狗對低容忍極不適合
|
970 |
+
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
|
971 |
+
'high': 0.90 # 愛叫的狗對高容忍可以接受
|
972 |
+
},
|
973 |
+
'varies': {
|
974 |
+
'low': 0.50, # 不確定的情況對低容忍風險較大
|
975 |
+
'medium': 0.75, # 不確定的情況對一般容忍可嘗試
|
976 |
+
'high': 0.85 # 不確定的情況對高容忍問題較小
|
977 |
+
}
|
978 |
+
}
|
979 |
|
980 |
+
# 取得基礎分數
|
981 |
+
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
|
|
|
|
|
|
|
|
|
|
|
|
|
982 |
|
983 |
+
# 吠叫原因評估,根據環境調整懲罰程度
|
984 |
+
barking_penalties = {
|
985 |
+
'separation anxiety': {
|
986 |
+
'apartment': -0.30, # 在公寓對鄰居影響更大
|
987 |
+
'house_small': -0.25,
|
988 |
+
'house_large': -0.20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
989 |
},
|
990 |
+
'excessive barking': {
|
991 |
+
'apartment': -0.25,
|
992 |
+
'house_small': -0.20,
|
993 |
+
'house_large': -0.15
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
994 |
},
|
995 |
+
'territorial': {
|
996 |
+
'apartment': -0.20, # 在公寓更容易被觸發
|
997 |
+
'house_small': -0.15,
|
998 |
+
'house_large': -0.10
|
999 |
+
},
|
1000 |
+
'alert barking': {
|
1001 |
+
'apartment': -0.15, # 公寓環境刺激較多
|
1002 |
+
'house_small': -0.10,
|
1003 |
+
'house_large': -0.08
|
1004 |
+
},
|
1005 |
+
'attention seeking': {
|
1006 |
+
'apartment': -0.15,
|
1007 |
+
'house_small': -0.12,
|
1008 |
+
'house_large': -0.10
|
|
|
|
|
1009 |
}
|
1010 |
}
|
1011 |
+
|
1012 |
+
# 計算環境相關的吠叫懲罰
|
1013 |
+
living_space = user_prefs.living_space
|
1014 |
+
barking_penalty = 0
|
1015 |
+
for trigger, penalties in barking_penalties.items():
|
1016 |
+
if trigger in noise_notes:
|
1017 |
+
barking_penalty += penalties.get(living_space, -0.15)
|
1018 |
+
|
1019 |
+
# 特殊情況評估
|
1020 |
+
special_adjustments = 0
|
1021 |
+
if user_prefs.has_children:
|
1022 |
+
# 孩童年齡相關調整
|
1023 |
+
child_age_adjustments = {
|
1024 |
+
'toddler': {
|
1025 |
+
'high': -0.20, # 幼童對吵鬧更敏感
|
1026 |
+
'medium': -0.15,
|
1027 |
+
'low': -0.05
|
|
|
|
|
|
|
|
|
1028 |
},
|
1029 |
+
'school_age': {
|
1030 |
+
'high': -0.15,
|
1031 |
+
'medium': -0.10,
|
1032 |
+
'low': -0.05
|
1033 |
},
|
1034 |
+
'teenager': {
|
1035 |
+
'high': -0.10,
|
1036 |
+
'medium': -0.05,
|
1037 |
+
'low': -0.02
|
1038 |
}
|
1039 |
}
|
1040 |
|
1041 |
+
# 根據孩童年齡和噪音等級調整
|
1042 |
+
age_adj = child_age_adjustments.get(user_prefs.children_age,
|
1043 |
+
child_age_adjustments['school_age'])
|
1044 |
+
special_adjustments += age_adj.get(noise_level, -0.10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1045 |
|
1046 |
+
# 訓練性補償評估
|
1047 |
+
trainability_bonus = 0
|
1048 |
+
if 'responds well to training' in noise_notes:
|
1049 |
+
trainability_bonus = 0.12
|
1050 |
+
elif 'can be trained' in noise_notes:
|
1051 |
+
trainability_bonus = 0.08
|
1052 |
+
elif 'difficult to train' in noise_notes:
|
1053 |
+
trainability_bonus = 0.02
|
1054 |
+
|
1055 |
+
# 夜間吠叫特別考量
|
1056 |
+
if 'night barking' in noise_notes or 'howls' in noise_notes:
|
1057 |
+
if user_prefs.living_space == 'apartment':
|
1058 |
+
special_adjustments -= 0.15
|
1059 |
+
elif user_prefs.living_space == 'house_small':
|
1060 |
+
special_adjustments -= 0.10
|
1061 |
+
else:
|
1062 |
+
special_adjustments -= 0.05
|
1063 |
+
|
1064 |
+
# 計算最終分數,確保更大的分數範圍
|
1065 |
+
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
|
1066 |
+
return max(0.1, min(1.0, final_score))
|
1067 |
+
|
1068 |
|
1069 |
+
# 1. 計算基礎分數
|
|
|
|
|
1070 |
print("\n=== 開始計算品種相容性分數 ===")
|
1071 |
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
|
1072 |
print(f"品種信息: {breed_info}")
|
|
|
1074 |
|
1075 |
# 計算所有基礎分數並整合到字典中
|
1076 |
scores = {
|
1077 |
+
'space': calculate_space_score(
|
1078 |
+
breed_info['Size'],
|
1079 |
+
user_prefs.living_space,
|
1080 |
+
user_prefs.yard_access != 'no_yard',
|
1081 |
+
breed_info.get('Exercise Needs', 'Moderate')
|
1082 |
+
),
|
1083 |
'exercise': calculate_exercise_score(
|
1084 |
breed_info.get('Exercise Needs', 'Moderate'),
|
1085 |
user_prefs.exercise_time,
|
1086 |
+
user_prefs.exercise_type
|
1087 |
),
|
1088 |
'grooming': calculate_grooming_score(
|
1089 |
breed_info.get('Grooming Needs', 'Moderate'),
|
1090 |
user_prefs.grooming_commitment.lower(),
|
1091 |
breed_info['Size']
|
1092 |
),
|
1093 |
+
'experience': calculate_experience_score(
|
1094 |
+
breed_info.get('Care Level', 'Moderate'),
|
1095 |
+
user_prefs.experience_level,
|
1096 |
+
breed_info.get('Temperament', '')
|
1097 |
+
),
|
1098 |
'health': calculate_health_score(
|
1099 |
breed_info.get('Breed', ''),
|
1100 |
user_prefs
|
1101 |
),
|
1102 |
'noise': calculate_noise_score(
|
1103 |
+
breed_info.get('Breed', ''),
|
1104 |
user_prefs
|
1105 |
)
|
1106 |
}
|
1107 |
|
1108 |
+
final_score = calculate_breed_compatibility_score(
|
1109 |
+
scores=scores,
|
1110 |
+
user_prefs=user_prefs,
|
1111 |
+
breed_info=breed_info
|
1112 |
+
)
|
1113 |
+
|
1114 |
# 計算環境適應性加成
|
1115 |
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
|
1116 |
+
|
1117 |
# 整合最終分數和加成
|
1118 |
final_score = (final_score * 0.9) + (adaptability_bonus * 0.1)
|
1119 |
final_score = amplify_score_extreme(final_score)
|
1120 |
+
|
1121 |
# 更新並返回完整的評分結果
|
1122 |
scores.update({
|
1123 |
'overall': final_score,
|
1124 |
'adaptability_bonus': adaptability_bonus
|
1125 |
})
|
1126 |
+
|
1127 |
return scores
|
1128 |
+
|
1129 |
except Exception as e:
|
1130 |
print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
|
1131 |
print(f"錯誤類型: {type(e).__name__}")
|
|
|
1135 |
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|
1136 |
|
1137 |
|
1138 |
+
def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
|
1139 |
+
"""計算品種與環境的適應性加成"""
|
1140 |
+
adaptability_score = 0.0
|
1141 |
+
description = breed_info.get('Description', '').lower()
|
1142 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1143 |
+
|
1144 |
+
# ���境適應性評估
|
1145 |
+
if user_prefs.living_space == 'apartment':
|
1146 |
+
if 'adaptable' in temperament or 'apartment' in description:
|
1147 |
+
adaptability_score += 0.1
|
1148 |
+
if breed_info.get('Size') == 'Small':
|
1149 |
+
adaptability_score += 0.05
|
1150 |
+
elif user_prefs.living_space == 'house_large':
|
1151 |
+
if 'active' in temperament or 'energetic' in description:
|
1152 |
+
adaptability_score += 0.1
|
1153 |
+
|
1154 |
+
# 氣候適應性
|
1155 |
+
if user_prefs.climate in description or user_prefs.climate in temperament:
|
1156 |
+
adaptability_score += 0.05
|
1157 |
|
1158 |
+
return min(0.2, adaptability_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1159 |
|
|
|
1160 |
|
1161 |
+
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1162 |
+
"""
|
1163 |
+
改進的品種相容性評分系統
|
1164 |
+
通過更細緻的特徵評估和動態權重調整,自然產生分數差異
|
1165 |
+
"""
|
1166 |
+
# 評估關鍵特徵的匹配度,使用更極端的調整係數
|
1167 |
+
def evaluate_key_features():
|
1168 |
+
# 空間適配性評估
|
1169 |
+
space_multiplier = 1.0
|
1170 |
+
if user_prefs.living_space == 'apartment':
|
1171 |
+
if breed_info['Size'] == 'Giant':
|
1172 |
+
space_multiplier = 0.3 # 嚴重不適合
|
1173 |
+
elif breed_info['Size'] == 'Large':
|
1174 |
+
space_multiplier = 0.4 # 明顯不適合
|
1175 |
+
elif breed_info['Size'] == 'Small':
|
1176 |
+
space_multiplier = 1.4 # 明顯優勢
|
1177 |
|
1178 |
+
# 運動需求評估
|
1179 |
+
exercise_multiplier = 1.0
|
1180 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1181 |
+
if exercise_needs == 'VERY HIGH':
|
1182 |
+
if user_prefs.exercise_time < 60:
|
1183 |
+
exercise_multiplier = 0.3 # 嚴重不足
|
1184 |
+
elif user_prefs.exercise_time > 150:
|
1185 |
+
exercise_multiplier = 1.5 # 完美匹配
|
1186 |
+
elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
|
1187 |
+
exercise_multiplier = 0.5 # 運動過度
|
|
|
|
|
|
|
|
|
1188 |
|
1189 |
+
return space_multiplier, exercise_multiplier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1190 |
|
1191 |
+
# 計算經驗匹配度
|
1192 |
+
def evaluate_experience():
|
1193 |
+
exp_multiplier = 1.0
|
1194 |
+
care_level = breed_info.get('Care Level', 'MODERATE')
|
1195 |
+
|
1196 |
+
if care_level == 'High':
|
1197 |
+
if user_prefs.experience_level == 'beginner':
|
1198 |
+
exp_multiplier = 0.4
|
1199 |
+
elif user_prefs.experience_level == 'advanced':
|
1200 |
+
exp_multiplier = 1.3
|
1201 |
+
elif care_level == 'Low':
|
1202 |
+
if user_prefs.experience_level == 'advanced':
|
1203 |
+
exp_multiplier = 0.9 # 略微降低評分,因為可能不夠有挑戰性
|
1204 |
+
|
1205 |
+
return exp_multiplier
|
1206 |
|
1207 |
+
# 取得特徵調整係數
|
1208 |
+
space_mult, exercise_mult = evaluate_key_features()
|
1209 |
+
exp_mult = evaluate_experience()
|
|
|
|
|
|
|
|
|
1210 |
|
1211 |
+
# 調整基礎分數
|
1212 |
+
adjusted_scores = {
|
1213 |
+
'space': scores['space'] * space_mult,
|
1214 |
+
'exercise': scores['exercise'] * exercise_mult,
|
1215 |
+
'experience': scores['experience'] * exp_mult,
|
1216 |
+
'grooming': scores['grooming'],
|
1217 |
+
'health': scores['health'],
|
1218 |
+
'noise': scores['noise']
|
1219 |
+
}
|
1220 |
|
1221 |
+
# 計算加權平均,關鍵特徵佔更大權重
|
1222 |
+
weights = {
|
1223 |
+
'space': 0.35,
|
1224 |
+
'exercise': 0.30,
|
1225 |
+
'experience': 0.20,
|
1226 |
+
'grooming': 0.15,
|
1227 |
+
'health': 0.10,
|
1228 |
+
'noise': 0.10
|
1229 |
+
}
|
1230 |
|
1231 |
+
# 動態調整權重
|
1232 |
+
if user_prefs.living_space == 'apartment':
|
1233 |
+
weights['space'] *= 1.5
|
1234 |
+
weights['noise'] *= 1.3
|
1235 |
|
1236 |
+
if abs(user_prefs.exercise_time - 120) > 60: # 運動時間極端情況
|
1237 |
+
weights['exercise'] *= 1.4
|
1238 |
|
1239 |
+
# 正規化權重
|
1240 |
+
total_weight = sum(weights.values())
|
1241 |
+
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1242 |
|
1243 |
+
# 計算最終分數
|
1244 |
+
final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1245 |
|
1246 |
+
# 品種特性加成
|
1247 |
+
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1248 |
|
1249 |
+
# 整合最終分數,保持在0-1範圍內
|
1250 |
+
return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1252 |
|
1253 |
def amplify_score_extreme(score: float) -> float:
|
1254 |
"""
|
1255 |
+
改進的分數轉換函數
|
1256 |
+
提供更大的分數範圍和更明顯的差異
|
|
|
|
|
|
|
|
|
|
|
1257 |
|
1258 |
+
轉換邏輯:
|
1259 |
+
- 極差匹配 (0.0-0.3) -> 60-68%
|
1260 |
+
- 較差匹配 (0.3-0.5) -> 68-75%
|
1261 |
+
- 中等匹配 (0.5-0.7) -> 75-85%
|
1262 |
+
- 良好匹配 (0.7-0.85) -> 85-92%
|
1263 |
+
- 優秀匹配 (0.85-1.0) -> 92-95%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1264 |
"""
|
1265 |
+
if score < 0.3:
|
1266 |
+
# 極差匹配:快速線性增長
|
1267 |
+
return 0.60 + (score / 0.3) * 0.08
|
1268 |
+
elif score < 0.5:
|
1269 |
+
# 較差匹配:緩慢增長
|
1270 |
+
position = (score - 0.3) / 0.2
|
1271 |
+
return 0.68 + position * 0.07
|
1272 |
+
elif score < 0.7:
|
1273 |
+
# 中等匹配:穩定線性增長
|
1274 |
+
position = (score - 0.5) / 0.2
|
1275 |
+
return 0.75 + position * 0.10
|
1276 |
+
elif score < 0.85:
|
1277 |
+
# 良好匹配:加速增長
|
1278 |
+
position = (score - 0.7) / 0.15
|
1279 |
+
return 0.85 + position * 0.07
|
|
|
|
|
|
|
|
|
|
|
|
|
1280 |
else:
|
1281 |
+
# 優秀匹配:最後衝刺
|
1282 |
+
position = (score - 0.85) / 0.15
|
1283 |
+
return 0.92 + position * 0.03
|