File size: 13,659 Bytes
abbc24d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import streamlit as st
import requests
import pandas as pd
import numpy as np
import plotly.express as px
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from datetime import datetime, timedelta
from streamlit_option_menu import option_menu
from markup import real_estate_app, real_estate_app_hf
import feedparser
API_URL = "https://api.coingecko.com/api/v3"
PASSWORD = 'Ethan101'
def authenticate(password):
return password == PASSWORD
def get_ethereum_data():
response = requests.get(f"{API_URL}/coins/markets", params={"ids": "ethereum", "vs_currency": "usd"})
data = response.json()
return data
def format_price(price):
return "{:.10f}".format(price)
def get_new_tokens():
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": 1})
data = response.json()
new_tokens = []
for token in data["market_caps"]:
timestamp, market_cap = token
if market_cap > 20000:
coin_token = data["prices"][data["market_caps"].index(token)][1]
coin_token_hex = float_to_hex(coin_token)
new_tokens.append((coin_token_hex, timestamp, market_cap))
# Sort the tokens based on the timestamp in descending order
new_tokens.sort(key=lambda x: x[1], reverse=True)
return new_tokens
def float_to_hex(f):
# Convert the float to its hexadecimal representation
_, hex_representation = f.hex().split('x')
return "0x" + hex_representation
def predict_price(df_price_history, days):
X = df_price_history.index.values.reshape(-1, 1)
y = df_price_history["price"].values
lr_model = LinearRegression()
lr_model.fit(X, y)
last_date = df_price_history.iloc[-1]["date"]
lr_future_dates = pd.date_range(last_date, periods=days+1)[1:]
lr_future_predictions = lr_model.predict(np.array(range(1, days+1)).reshape(-1, 1))
rf_model = RandomForestRegressor(n_estimators=100)
rf_model.fit(X, y)
rf_future_dates = pd.date_range(last_date, periods=days+1)[1:]
rf_future_predictions = rf_model.predict(np.array(range(1, days+1)).reshape(-1, 1))
return lr_future_dates, lr_future_predictions, rf_future_dates, rf_future_predictions
def tab1():
st.header("ethereum Cryptocurrency Predictions Demo")
col1, col2 = st.columns([1, 2])
with col1:
st.image("Hotpot.png", use_column_width=True)
with col2:
st.markdown(real_estate_app(), unsafe_allow_html=True)
st.markdown(real_estate_app_hf(),unsafe_allow_html=True)
github_link = '[<img src="https://badgen.net/badge/icon/github?icon=github&label">](https://github.com/ethanrom)'
#huggingface_link = '[<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">](https://huggingface.co/ethanrom)'
st.write(github_link + ' ', unsafe_allow_html=True)
def tab2():
ethereum_data = get_ethereum_data()
if ethereum_data:
ethereum_info = {
"Symbol": ethereum_data[0]["symbol"],
"Current Price": format_price(ethereum_data[0]["current_price"]),
"Market Cap": ethereum_data[0]["market_cap"],
"Total Volume": ethereum_data[0]["total_volume"],
"Circulating Supply": ethereum_data[0]["circulating_supply"],
}
df_ethereum = pd.DataFrame(ethereum_info, index=[0])
st.markdown("## Ethereum Information")
st.dataframe(df_ethereum)
# Visualize Market Cap and Total Volume
market_cap = ethereum_data[0]["market_cap"]
total_volume = ethereum_data[0]["total_volume"]
df_market_cap_volume = pd.DataFrame({"Metric": ["Market Cap", "Total Volume"],
"Value (USD)": [market_cap, total_volume]})
st.markdown("## Market Cap and Total Volume")
st.bar_chart(df_market_cap_volume, x="Metric", y="Value (USD)")
st.markdown(
"""
The bar chart above shows the current market capitalization and total trading volume of Ethereum in USD.
"""
)
circulating_supply = ethereum_data[0]["circulating_supply"]
max_supply = ethereum_data[0]["total_supply"]
st.markdown("## Supply Information")
st.write(f"**Circulating Supply:** {circulating_supply:.2f} Ethereum")
st.write(f"**Max Supply:** {max_supply:.2f} Ethereum")
# Additional Visualization: Pie Chart for Circulating vs. Max Supply
supply_data = pd.DataFrame({
"Supply": ["Circulating Supply", "Max Supply"],
"Amount (Ethereum)": [circulating_supply, max_supply]
})
fig = px.pie(supply_data, values="Amount (Ethereum)", names="Supply", title="Circulating vs. Max Supply")
st.markdown("## Circulating vs. Max Supply")
st.write(
"""
The pie chart above compares the circulating supply and maximum supply of Ethereum in terms of the number of tokens.
"""
)
st.plotly_chart(fig)
# Show new Ethereum tokens created in the last 24 hours with market cap > $20,000
new_tokens = get_new_tokens()
if new_tokens:
st.markdown("## New Ethereum Tokens Created in the Last 24 Hours (Market Cap > $20,000)")
for coin_token, timestamp, market_cap in new_tokens:
time_created = pd.to_datetime(timestamp, unit="ms").strftime("%H:%M:%S")
st.write(f"COIN TOKEN: {coin_token}, TIME CREATED: {time_created}, MARKET CAP: ${market_cap/1e6:.1f}MM")
else:
st.write("No new Ethereum tokens with market cap > $20,000 created in the last 24 hours.")
def tab3():
ethereum_data = get_ethereum_data()
if ethereum_data:
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": "30"})
price_history = response.json()
df_price_history = pd.DataFrame(price_history["prices"], columns=["date", "price"])
df_price_history["date"] = pd.to_datetime(df_price_history["date"], unit="ms")
st.markdown("## ethereum Price History")
fig = px.line(df_price_history, x="date", y="price", title="ethereum Price History")
fig.update_layout(xaxis_title="Date", yaxis_title="Price (USD)")
st.plotly_chart(fig)
st.markdown(
"""
The line chart above shows the historical price trend of ethereum over the last 30 days.
"""
)
col1, col2 = st.columns(2)
with col1:
price_stats = df_price_history["price"].describe()
st.markdown("## Price Statistics")
st.write(price_stats)
with col2:
st.markdown("## Price Distribution")
fig_hist = px.histogram(df_price_history, x="price", nbins=20, title="Histogram of Price Distribution")
fig_hist.update_layout(xaxis_title="Price (USD)", yaxis_title="Count")
st.plotly_chart(fig_hist)
st.markdown(
"""
The histogram above displays the distribution of ethereum prices over the last 30 days.
"""
)
else:
st.write("Failed to retrieve ethereum data")
def tab4():
ethereum_data = get_ethereum_data()
if ethereum_data:
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": "30"})
price_history = response.json()
df_price_history = pd.DataFrame(price_history["prices"], columns=["date", "price"])
df_price_history["date"] = pd.to_datetime(df_price_history["date"], unit="ms")
# Perform predictions
days = 30
lr_future_dates, lr_future_predictions, rf_future_dates, rf_future_predictions = predict_price(df_price_history, days)
# Visualize predictions using line charts
st.markdown("## Price Predictions")
st.subheader("Linear Regression Prediction")
df_lr_predicted = pd.DataFrame({"Date": lr_future_dates, "Predicted Price": lr_future_predictions})
st.line_chart(df_lr_predicted, x="Date", y="Predicted Price")
st.subheader("Random Forest Regression Prediction")
df_rf_predicted = pd.DataFrame({"Date": rf_future_dates, "Predicted Price": rf_future_predictions})
st.line_chart(df_rf_predicted, x="Date", y="Predicted Price")
# Additional Visualization: Combined Line Chart for Actual and Predicted Prices
df_combined = pd.concat([df_price_history, df_lr_predicted.rename(columns={"Predicted Price": "price"})])
df_combined["Type"] = ["Actual"] * len(df_price_history) + ["Predicted (LR)"] * len(df_lr_predicted)
fig_combined = px.line(df_combined, x="date", y="price", color="Type", title="Actual vs. Predicted (LR) Prices")
fig_combined.update_layout(xaxis_title="Date", yaxis_title="Price (USD)")
st.plotly_chart(fig_combined)
# Add text explanation for predictions
st.markdown("## Predictions Explanation")
st.write(
"""
The price predictions are estimated using regression models: Linear Regression (LR) and Random Forest Regression (RF).
The line charts show the predicted prices over the next 30 days based on historical price data.
"""
)
else:
st.write("Failed to retrieve ethereum data")
#tab5
RSS_FEED_URLS = {
"CryptoNews": "https://cryptonews.com/news/feed/",
"CoinDesk": "https://www.coindesk.com/feed",
"CryptoSlate": "https://cryptoslate.com/feed/",
# Add more RSS feed URLs here
}
def fetch_latest_news(url):
feed = feedparser.parse(url)
entries = feed.entries[:5] # Fetching the latest 5 news entries
return entries
def filter_news_by_keyword(entries, keyword):
filtered_entries = []
for entry in entries:
if keyword.lower() in entry.title.lower() or keyword.lower() in entry.summary.lower():
filtered_entries.append(entry)
return filtered_entries
def display_news_entry(entry):
st.markdown(f"## {entry.title}")
st.write(entry.summary)
st.write(f"Published on: {entry.published}")
st.write("---")
def tab5():
selected_feeds = st.multiselect("Select RSS Feeds", list(RSS_FEED_URLS.keys()), default=["CryptoNews"])
filter_keyword = st.text_input("Filter by keyword (e.g., ethereum)")
for feed in selected_feeds:
st.markdown(f"### {feed} News")
if feed in RSS_FEED_URLS:
entries = fetch_latest_news(RSS_FEED_URLS[feed])
if filter_keyword:
entries = filter_news_by_keyword(entries, filter_keyword)
for entry in entries:
display_news_entry(entry)
else:
st.write(f"No RSS feed URL found for {feed}")
def tab6():
st.header("Download script")
st.markdown(
"""
download the standalone python script to print new tokens
"""
)
st.image("eth.PNG")
password_input = st.text_input('Enter Password', type='password')
if authenticate(password_input):
# Contents of the get_new_coins.py file
script_content = """
import requests
import pandas as pd
API_URL = "https://api.coingecko.com/api/v3"
def float_to_hex(f):
_, hex_representation = f.hex().split('x')
return "0x" + hex_representation
def get_new_tokens():
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": 1})
data = response.json()
new_tokens = []
for token in data["market_caps"]:
timestamp, market_cap = token
if market_cap > 20000:
coin_token = data["prices"][data["market_caps"].index(token)][1]
coin_token_hex = float_to_hex(coin_token)
new_tokens.append((coin_token_hex, timestamp, market_cap))
return new_tokens
if __name__ == "__main__":
new_tokens = get_new_tokens()
if new_tokens:
print("New Ethereum Tokens Created in the Last 24 Hours (Market Cap > $20,000)")
for coin_token, timestamp, market_cap in new_tokens:
time_created = pd.to_datetime(timestamp, unit="ms").strftime("%H:%M:%S")
print(f"COIN: {coin_token}, TIME CREATED: {time_created}, MARKET CAP: ${market_cap/1e6:.1f}MM")
else:
print("No new Ethereum tokens with market cap > $20,000 created in the last 24 hours.")
"""
# Display the content of the script in the app
st.code(script_content, language="python")
# Download link for the script
file_name = "get_new_coins.py"
st.download_button(
label="Download get_new_coins.py",
data=script_content,
file_name=file_name,
mime="text/plain",
)
else:
# Password is incorrect, show an error message
st.error('Invalid password. Access denied.')
def main():
st.set_page_config(page_title="ethereum Dashboard", page_icon=":memo:", layout="wide")
tabs = ["Intro", "ethereum Information", "ethereum Price History", "Price Predictions", "News", "Download Script"]
with st.sidebar:
current_tab = option_menu("Select a Tab", tabs, menu_icon="cast")
tab_functions = {
"Intro": tab1,
"ethereum Information": tab2,
"ethereum Price History": tab3,
"Price Predictions": tab4,
"News": tab5,
"Download Script": tab6,
}
if current_tab in tab_functions:
tab_functions[current_tab]()
if __name__ == "__main__":
main() |