Upload 7 files
Browse files- Hotpot.png +0 -0
- app.py +349 -0
- eth.PNG +0 -0
- get_new_coins.py +34 -0
- get_new_coins_auto.py +39 -0
- markup.py +27 -0
- requirements.txt +6 -0
Hotpot.png
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import plotly.express as px
|
6 |
+
from sklearn.linear_model import LinearRegression
|
7 |
+
from sklearn.ensemble import RandomForestRegressor
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
from streamlit_option_menu import option_menu
|
10 |
+
from markup import real_estate_app, real_estate_app_hf
|
11 |
+
import feedparser
|
12 |
+
|
13 |
+
API_URL = "https://api.coingecko.com/api/v3"
|
14 |
+
|
15 |
+
PASSWORD = 'Ethan101'
|
16 |
+
|
17 |
+
def authenticate(password):
|
18 |
+
return password == PASSWORD
|
19 |
+
|
20 |
+
def get_ethereum_data():
|
21 |
+
response = requests.get(f"{API_URL}/coins/markets", params={"ids": "ethereum", "vs_currency": "usd"})
|
22 |
+
data = response.json()
|
23 |
+
return data
|
24 |
+
|
25 |
+
def format_price(price):
|
26 |
+
return "{:.10f}".format(price)
|
27 |
+
|
28 |
+
def get_new_tokens():
|
29 |
+
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": 1})
|
30 |
+
data = response.json()
|
31 |
+
|
32 |
+
new_tokens = []
|
33 |
+
for token in data["market_caps"]:
|
34 |
+
timestamp, market_cap = token
|
35 |
+
if market_cap > 20000:
|
36 |
+
coin_token = data["prices"][data["market_caps"].index(token)][1]
|
37 |
+
coin_token_hex = float_to_hex(coin_token)
|
38 |
+
new_tokens.append((coin_token_hex, timestamp, market_cap))
|
39 |
+
|
40 |
+
# Sort the tokens based on the timestamp in descending order
|
41 |
+
new_tokens.sort(key=lambda x: x[1], reverse=True)
|
42 |
+
|
43 |
+
return new_tokens
|
44 |
+
|
45 |
+
def float_to_hex(f):
|
46 |
+
# Convert the float to its hexadecimal representation
|
47 |
+
_, hex_representation = f.hex().split('x')
|
48 |
+
return "0x" + hex_representation
|
49 |
+
|
50 |
+
def predict_price(df_price_history, days):
|
51 |
+
X = df_price_history.index.values.reshape(-1, 1)
|
52 |
+
y = df_price_history["price"].values
|
53 |
+
lr_model = LinearRegression()
|
54 |
+
lr_model.fit(X, y)
|
55 |
+
last_date = df_price_history.iloc[-1]["date"]
|
56 |
+
lr_future_dates = pd.date_range(last_date, periods=days+1)[1:]
|
57 |
+
lr_future_predictions = lr_model.predict(np.array(range(1, days+1)).reshape(-1, 1))
|
58 |
+
rf_model = RandomForestRegressor(n_estimators=100)
|
59 |
+
rf_model.fit(X, y)
|
60 |
+
rf_future_dates = pd.date_range(last_date, periods=days+1)[1:]
|
61 |
+
rf_future_predictions = rf_model.predict(np.array(range(1, days+1)).reshape(-1, 1))
|
62 |
+
|
63 |
+
return lr_future_dates, lr_future_predictions, rf_future_dates, rf_future_predictions
|
64 |
+
|
65 |
+
def tab1():
|
66 |
+
st.header("ethereum Cryptocurrency Predictions Demo")
|
67 |
+
col1, col2 = st.columns([1, 2])
|
68 |
+
with col1:
|
69 |
+
st.image("Hotpot.png", use_column_width=True)
|
70 |
+
with col2:
|
71 |
+
st.markdown(real_estate_app(), unsafe_allow_html=True)
|
72 |
+
st.markdown(real_estate_app_hf(),unsafe_allow_html=True)
|
73 |
+
|
74 |
+
|
75 |
+
github_link = '[<img src="https://badgen.net/badge/icon/github?icon=github&label">](https://github.com/ethanrom)'
|
76 |
+
#huggingface_link = '[<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">](https://huggingface.co/ethanrom)'
|
77 |
+
|
78 |
+
st.write(github_link + ' ', unsafe_allow_html=True)
|
79 |
+
|
80 |
+
def tab2():
|
81 |
+
ethereum_data = get_ethereum_data()
|
82 |
+
if ethereum_data:
|
83 |
+
ethereum_info = {
|
84 |
+
"Symbol": ethereum_data[0]["symbol"],
|
85 |
+
"Current Price": format_price(ethereum_data[0]["current_price"]),
|
86 |
+
"Market Cap": ethereum_data[0]["market_cap"],
|
87 |
+
"Total Volume": ethereum_data[0]["total_volume"],
|
88 |
+
"Circulating Supply": ethereum_data[0]["circulating_supply"],
|
89 |
+
}
|
90 |
+
df_ethereum = pd.DataFrame(ethereum_info, index=[0])
|
91 |
+
|
92 |
+
st.markdown("## Ethereum Information")
|
93 |
+
st.dataframe(df_ethereum)
|
94 |
+
|
95 |
+
# Visualize Market Cap and Total Volume
|
96 |
+
market_cap = ethereum_data[0]["market_cap"]
|
97 |
+
total_volume = ethereum_data[0]["total_volume"]
|
98 |
+
df_market_cap_volume = pd.DataFrame({"Metric": ["Market Cap", "Total Volume"],
|
99 |
+
"Value (USD)": [market_cap, total_volume]})
|
100 |
+
st.markdown("## Market Cap and Total Volume")
|
101 |
+
st.bar_chart(df_market_cap_volume, x="Metric", y="Value (USD)")
|
102 |
+
st.markdown(
|
103 |
+
"""
|
104 |
+
The bar chart above shows the current market capitalization and total trading volume of Ethereum in USD.
|
105 |
+
"""
|
106 |
+
)
|
107 |
+
|
108 |
+
circulating_supply = ethereum_data[0]["circulating_supply"]
|
109 |
+
max_supply = ethereum_data[0]["total_supply"]
|
110 |
+
|
111 |
+
st.markdown("## Supply Information")
|
112 |
+
st.write(f"**Circulating Supply:** {circulating_supply:.2f} Ethereum")
|
113 |
+
st.write(f"**Max Supply:** {max_supply:.2f} Ethereum")
|
114 |
+
|
115 |
+
# Additional Visualization: Pie Chart for Circulating vs. Max Supply
|
116 |
+
supply_data = pd.DataFrame({
|
117 |
+
"Supply": ["Circulating Supply", "Max Supply"],
|
118 |
+
"Amount (Ethereum)": [circulating_supply, max_supply]
|
119 |
+
})
|
120 |
+
fig = px.pie(supply_data, values="Amount (Ethereum)", names="Supply", title="Circulating vs. Max Supply")
|
121 |
+
st.markdown("## Circulating vs. Max Supply")
|
122 |
+
st.write(
|
123 |
+
"""
|
124 |
+
The pie chart above compares the circulating supply and maximum supply of Ethereum in terms of the number of tokens.
|
125 |
+
"""
|
126 |
+
)
|
127 |
+
st.plotly_chart(fig)
|
128 |
+
|
129 |
+
# Show new Ethereum tokens created in the last 24 hours with market cap > $20,000
|
130 |
+
new_tokens = get_new_tokens()
|
131 |
+
if new_tokens:
|
132 |
+
st.markdown("## New Ethereum Tokens Created in the Last 24 Hours (Market Cap > $20,000)")
|
133 |
+
for coin_token, timestamp, market_cap in new_tokens:
|
134 |
+
time_created = pd.to_datetime(timestamp, unit="ms").strftime("%H:%M:%S")
|
135 |
+
st.write(f"COIN TOKEN: {coin_token}, TIME CREATED: {time_created}, MARKET CAP: ${market_cap/1e6:.1f}MM")
|
136 |
+
else:
|
137 |
+
st.write("No new Ethereum tokens with market cap > $20,000 created in the last 24 hours.")
|
138 |
+
|
139 |
+
|
140 |
+
def tab3():
|
141 |
+
ethereum_data = get_ethereum_data()
|
142 |
+
if ethereum_data:
|
143 |
+
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": "30"})
|
144 |
+
price_history = response.json()
|
145 |
+
df_price_history = pd.DataFrame(price_history["prices"], columns=["date", "price"])
|
146 |
+
df_price_history["date"] = pd.to_datetime(df_price_history["date"], unit="ms")
|
147 |
+
|
148 |
+
st.markdown("## ethereum Price History")
|
149 |
+
fig = px.line(df_price_history, x="date", y="price", title="ethereum Price History")
|
150 |
+
fig.update_layout(xaxis_title="Date", yaxis_title="Price (USD)")
|
151 |
+
st.plotly_chart(fig)
|
152 |
+
st.markdown(
|
153 |
+
"""
|
154 |
+
The line chart above shows the historical price trend of ethereum over the last 30 days.
|
155 |
+
"""
|
156 |
+
)
|
157 |
+
|
158 |
+
col1, col2 = st.columns(2)
|
159 |
+
with col1:
|
160 |
+
|
161 |
+
price_stats = df_price_history["price"].describe()
|
162 |
+
st.markdown("## Price Statistics")
|
163 |
+
st.write(price_stats)
|
164 |
+
|
165 |
+
with col2:
|
166 |
+
st.markdown("## Price Distribution")
|
167 |
+
fig_hist = px.histogram(df_price_history, x="price", nbins=20, title="Histogram of Price Distribution")
|
168 |
+
fig_hist.update_layout(xaxis_title="Price (USD)", yaxis_title="Count")
|
169 |
+
st.plotly_chart(fig_hist)
|
170 |
+
st.markdown(
|
171 |
+
"""
|
172 |
+
The histogram above displays the distribution of ethereum prices over the last 30 days.
|
173 |
+
"""
|
174 |
+
)
|
175 |
+
|
176 |
+
else:
|
177 |
+
st.write("Failed to retrieve ethereum data")
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
def tab4():
|
182 |
+
ethereum_data = get_ethereum_data()
|
183 |
+
if ethereum_data:
|
184 |
+
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": "30"})
|
185 |
+
price_history = response.json()
|
186 |
+
df_price_history = pd.DataFrame(price_history["prices"], columns=["date", "price"])
|
187 |
+
df_price_history["date"] = pd.to_datetime(df_price_history["date"], unit="ms")
|
188 |
+
|
189 |
+
# Perform predictions
|
190 |
+
days = 30
|
191 |
+
lr_future_dates, lr_future_predictions, rf_future_dates, rf_future_predictions = predict_price(df_price_history, days)
|
192 |
+
|
193 |
+
# Visualize predictions using line charts
|
194 |
+
st.markdown("## Price Predictions")
|
195 |
+
st.subheader("Linear Regression Prediction")
|
196 |
+
df_lr_predicted = pd.DataFrame({"Date": lr_future_dates, "Predicted Price": lr_future_predictions})
|
197 |
+
st.line_chart(df_lr_predicted, x="Date", y="Predicted Price")
|
198 |
+
|
199 |
+
st.subheader("Random Forest Regression Prediction")
|
200 |
+
df_rf_predicted = pd.DataFrame({"Date": rf_future_dates, "Predicted Price": rf_future_predictions})
|
201 |
+
st.line_chart(df_rf_predicted, x="Date", y="Predicted Price")
|
202 |
+
|
203 |
+
# Additional Visualization: Combined Line Chart for Actual and Predicted Prices
|
204 |
+
df_combined = pd.concat([df_price_history, df_lr_predicted.rename(columns={"Predicted Price": "price"})])
|
205 |
+
df_combined["Type"] = ["Actual"] * len(df_price_history) + ["Predicted (LR)"] * len(df_lr_predicted)
|
206 |
+
fig_combined = px.line(df_combined, x="date", y="price", color="Type", title="Actual vs. Predicted (LR) Prices")
|
207 |
+
fig_combined.update_layout(xaxis_title="Date", yaxis_title="Price (USD)")
|
208 |
+
st.plotly_chart(fig_combined)
|
209 |
+
|
210 |
+
# Add text explanation for predictions
|
211 |
+
st.markdown("## Predictions Explanation")
|
212 |
+
st.write(
|
213 |
+
"""
|
214 |
+
The price predictions are estimated using regression models: Linear Regression (LR) and Random Forest Regression (RF).
|
215 |
+
The line charts show the predicted prices over the next 30 days based on historical price data.
|
216 |
+
"""
|
217 |
+
)
|
218 |
+
|
219 |
+
else:
|
220 |
+
st.write("Failed to retrieve ethereum data")
|
221 |
+
|
222 |
+
#tab5
|
223 |
+
RSS_FEED_URLS = {
|
224 |
+
"CryptoNews": "https://cryptonews.com/news/feed/",
|
225 |
+
"CoinDesk": "https://www.coindesk.com/feed",
|
226 |
+
"CryptoSlate": "https://cryptoslate.com/feed/",
|
227 |
+
# Add more RSS feed URLs here
|
228 |
+
}
|
229 |
+
|
230 |
+
def fetch_latest_news(url):
|
231 |
+
feed = feedparser.parse(url)
|
232 |
+
entries = feed.entries[:5] # Fetching the latest 5 news entries
|
233 |
+
return entries
|
234 |
+
|
235 |
+
def filter_news_by_keyword(entries, keyword):
|
236 |
+
filtered_entries = []
|
237 |
+
for entry in entries:
|
238 |
+
if keyword.lower() in entry.title.lower() or keyword.lower() in entry.summary.lower():
|
239 |
+
filtered_entries.append(entry)
|
240 |
+
return filtered_entries
|
241 |
+
|
242 |
+
def display_news_entry(entry):
|
243 |
+
st.markdown(f"## {entry.title}")
|
244 |
+
st.write(entry.summary)
|
245 |
+
st.write(f"Published on: {entry.published}")
|
246 |
+
st.write("---")
|
247 |
+
|
248 |
+
def tab5():
|
249 |
+
selected_feeds = st.multiselect("Select RSS Feeds", list(RSS_FEED_URLS.keys()), default=["CryptoNews"])
|
250 |
+
filter_keyword = st.text_input("Filter by keyword (e.g., ethereum)")
|
251 |
+
|
252 |
+
for feed in selected_feeds:
|
253 |
+
st.markdown(f"### {feed} News")
|
254 |
+
|
255 |
+
if feed in RSS_FEED_URLS:
|
256 |
+
entries = fetch_latest_news(RSS_FEED_URLS[feed])
|
257 |
+
|
258 |
+
if filter_keyword:
|
259 |
+
entries = filter_news_by_keyword(entries, filter_keyword)
|
260 |
+
|
261 |
+
for entry in entries:
|
262 |
+
display_news_entry(entry)
|
263 |
+
else:
|
264 |
+
st.write(f"No RSS feed URL found for {feed}")
|
265 |
+
|
266 |
+
def tab6():
|
267 |
+
st.header("Download script")
|
268 |
+
st.markdown(
|
269 |
+
"""
|
270 |
+
download the standalone python script to print new tokens
|
271 |
+
"""
|
272 |
+
)
|
273 |
+
st.image("eth.PNG")
|
274 |
+
password_input = st.text_input('Enter Password', type='password')
|
275 |
+
if authenticate(password_input):
|
276 |
+
# Contents of the get_new_coins.py file
|
277 |
+
script_content = """
|
278 |
+
import requests
|
279 |
+
import pandas as pd
|
280 |
+
|
281 |
+
API_URL = "https://api.coingecko.com/api/v3"
|
282 |
+
|
283 |
+
def float_to_hex(f):
|
284 |
+
_, hex_representation = f.hex().split('x')
|
285 |
+
return "0x" + hex_representation
|
286 |
+
|
287 |
+
def get_new_tokens():
|
288 |
+
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": 1})
|
289 |
+
data = response.json()
|
290 |
+
|
291 |
+
new_tokens = []
|
292 |
+
for token in data["market_caps"]:
|
293 |
+
timestamp, market_cap = token
|
294 |
+
if market_cap > 20000:
|
295 |
+
coin_token = data["prices"][data["market_caps"].index(token)][1]
|
296 |
+
coin_token_hex = float_to_hex(coin_token)
|
297 |
+
new_tokens.append((coin_token_hex, timestamp, market_cap))
|
298 |
+
return new_tokens
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
+
new_tokens = get_new_tokens()
|
302 |
+
if new_tokens:
|
303 |
+
print("New Ethereum Tokens Created in the Last 24 Hours (Market Cap > $20,000)")
|
304 |
+
for coin_token, timestamp, market_cap in new_tokens:
|
305 |
+
time_created = pd.to_datetime(timestamp, unit="ms").strftime("%H:%M:%S")
|
306 |
+
print(f"COIN: {coin_token}, TIME CREATED: {time_created}, MARKET CAP: ${market_cap/1e6:.1f}MM")
|
307 |
+
else:
|
308 |
+
print("No new Ethereum tokens with market cap > $20,000 created in the last 24 hours.")
|
309 |
+
"""
|
310 |
+
|
311 |
+
# Display the content of the script in the app
|
312 |
+
st.code(script_content, language="python")
|
313 |
+
|
314 |
+
# Download link for the script
|
315 |
+
file_name = "get_new_coins.py"
|
316 |
+
st.download_button(
|
317 |
+
label="Download get_new_coins.py",
|
318 |
+
data=script_content,
|
319 |
+
file_name=file_name,
|
320 |
+
mime="text/plain",
|
321 |
+
)
|
322 |
+
else:
|
323 |
+
# Password is incorrect, show an error message
|
324 |
+
st.error('Invalid password. Access denied.')
|
325 |
+
|
326 |
+
def main():
|
327 |
+
st.set_page_config(page_title="ethereum Dashboard", page_icon=":memo:", layout="wide")
|
328 |
+
tabs = ["Intro", "ethereum Information", "ethereum Price History", "Price Predictions", "News", "Download Script"]
|
329 |
+
|
330 |
+
with st.sidebar:
|
331 |
+
|
332 |
+
current_tab = option_menu("Select a Tab", tabs, menu_icon="cast")
|
333 |
+
|
334 |
+
tab_functions = {
|
335 |
+
"Intro": tab1,
|
336 |
+
"ethereum Information": tab2,
|
337 |
+
"ethereum Price History": tab3,
|
338 |
+
"Price Predictions": tab4,
|
339 |
+
"News": tab5,
|
340 |
+
"Download Script": tab6,
|
341 |
+
}
|
342 |
+
|
343 |
+
if current_tab in tab_functions:
|
344 |
+
tab_functions[current_tab]()
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
if __name__ == "__main__":
|
349 |
+
main()
|
eth.PNG
ADDED
|
get_new_coins.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
API_URL = "https://api.coingecko.com/api/v3"
|
5 |
+
|
6 |
+
def float_to_hex(f):
|
7 |
+
_, hex_representation = f.hex().split('x')
|
8 |
+
return "0x" + hex_representation
|
9 |
+
|
10 |
+
def get_new_tokens():
|
11 |
+
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": 1})
|
12 |
+
data = response.json()
|
13 |
+
|
14 |
+
new_tokens = []
|
15 |
+
for token in data["market_caps"]:
|
16 |
+
timestamp, market_cap = token
|
17 |
+
if market_cap > 20000:
|
18 |
+
coin_token = data["prices"][data["market_caps"].index(token)][1]
|
19 |
+
coin_token_hex = float_to_hex(coin_token)
|
20 |
+
new_tokens.append((coin_token_hex, timestamp, market_cap))
|
21 |
+
|
22 |
+
new_tokens.sort(key=lambda x: x[1], reverse=True)
|
23 |
+
|
24 |
+
return new_tokens
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
new_tokens = get_new_tokens()
|
28 |
+
if new_tokens:
|
29 |
+
print("New Ethereum Tokens Created in the Last 24 Hours (Market Cap > $20,000)")
|
30 |
+
for coin_token, timestamp, market_cap in new_tokens:
|
31 |
+
time_created = pd.to_datetime(timestamp, unit="ms").strftime("%H:%M:%S")
|
32 |
+
print(f"COIN: {coin_token}, TIME CREATED: {time_created}, MARKET CAP: ${market_cap/1e6:.1f}MM")
|
33 |
+
else:
|
34 |
+
print("No new Ethereum tokens with market cap > $20,000 created in the last 24 hours.")
|
get_new_coins_auto.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
import time
|
4 |
+
|
5 |
+
API_URL = "https://api.coingecko.com/api/v3"
|
6 |
+
|
7 |
+
def float_to_hex(f):
|
8 |
+
_, hex_representation = f.hex().split('x')
|
9 |
+
return "0x" + hex_representation
|
10 |
+
|
11 |
+
def get_new_tokens():
|
12 |
+
response = requests.get(f"{API_URL}/coins/ethereum/market_chart", params={"vs_currency": "usd", "days": 1})
|
13 |
+
data = response.json()
|
14 |
+
|
15 |
+
new_tokens = []
|
16 |
+
for token in data["market_caps"]:
|
17 |
+
timestamp, market_cap = token
|
18 |
+
if market_cap > 20000:
|
19 |
+
coin_token = data["prices"][data["market_caps"].index(token)][1]
|
20 |
+
coin_token_hex = float_to_hex(coin_token)
|
21 |
+
new_tokens.append((coin_token_hex, timestamp, market_cap))
|
22 |
+
|
23 |
+
new_tokens.sort(key=lambda x: x[1], reverse=True)
|
24 |
+
|
25 |
+
return new_tokens
|
26 |
+
|
27 |
+
if __name__ == "__main__":
|
28 |
+
while True:
|
29 |
+
new_tokens = get_new_tokens()
|
30 |
+
if new_tokens:
|
31 |
+
print("New Ethereum Tokens Created in the Last 24 Hours (Market Cap > $20,000)")
|
32 |
+
for coin_token, timestamp, market_cap in new_tokens:
|
33 |
+
time_created = pd.to_datetime(timestamp, unit="ms").strftime("%H:%M:%S")
|
34 |
+
print(f"COIN: {coin_token}, TIME CREATED: {time_created}, MARKET CAP: ${market_cap/1e6:.1f}MM")
|
35 |
+
else:
|
36 |
+
print("No new Ethereum tokens with market cap > $20,000 created in the last 24 hours.")
|
37 |
+
|
38 |
+
# Wait for 60 seconds before updating again
|
39 |
+
time.sleep(60)
|
markup.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def real_estate_app():
|
2 |
+
return """
|
3 |
+
<h3 style='text-align: center;'>Introduction</h3>
|
4 |
+
|
5 |
+
<p>This app allows you to view info about ethereum as well as predicted prices</p>
|
6 |
+
|
7 |
+
<h4>Information:</h4>
|
8 |
+
<ul>
|
9 |
+
<li><b>Real-Time Price Tracking:</b> You can view the current price of ethereum and track its fluctuations over time.</li>
|
10 |
+
<li><b>Market Data Analysis:</b> Analyze the market trends, trading volume, and other key metrics related to ethereum.</li>
|
11 |
+
</ul>
|
12 |
+
</div>
|
13 |
+
"""
|
14 |
+
|
15 |
+
def real_estate_app_hf():
|
16 |
+
return """
|
17 |
+
<div style='text-align: left;'>
|
18 |
+
<h3 style='text-align: center;'>About this Demo</h3>
|
19 |
+
<br>
|
20 |
+
<h4>How to use:</h4>
|
21 |
+
<ul>
|
22 |
+
<li><b>Price Tracking:</b> The app will automatically fetch and display the latest price of ethereum. You can also view historical price data using interactive charts.</li>
|
23 |
+
<li><b>Market Analysis:</b> Explore market indicators such as trading volume, market capitalization, and price change percentage. Visualize these metrics through graphs and charts.</li>
|
24 |
+
</ul>
|
25 |
+
<br>
|
26 |
+
</div>
|
27 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
streamlit_option_menu
|
4 |
+
plotly
|
5 |
+
scikit-learn
|
6 |
+
feedparser
|