File size: 5,851 Bytes
03310c4 5d7d186 70ca1ab 03310c4 7851025 03310c4 5d7d186 c233fe5 5d7d186 c233fe5 5d7d186 c233fe5 5d7d186 c233fe5 5d7d186 c233fe5 5d7d186 fbd7eda 5d7d186 d0faccd 7851025 c233fe5 7851025 d0faccd 1b04af5 5d7d186 d0faccd 7851025 03310c4 5d7d186 d0faccd 5d7d186 d0faccd 03310c4 1b04af5 d0faccd 1b04af5 d0faccd 5d7d186 1b04af5 d0faccd 5d7d186 d0faccd 5d7d186 d0faccd 9461725 d0faccd 1b04af5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import getpass
import os
from dotenv import load_dotenv
from typing import TypedDict, List, Dict, Any, Optional, Annotated
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI # Added ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langgraph.graph import StateGraph, MessagesState, START, END
from langgraph.graph.message import add_messages
from langchain_core.messages import SystemMessage, HumanMessage, AnyMessage, AIMessage
from langchain_core.messages.ai import subtract_usage
from langchain.tools import Tool
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.retrievers import BM25Retriever
from langgraph.prebuilt import ToolNode, tools_condition
# load system prompt
from prompts import system_prompt
# load environment variables
load_dotenv()
# maths tool
@tool
def add(a:int, b:int) -> int:
"""add two numbers.
args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a:int, b:int) -> int:
"""subtract two numbers.
args:
a: first int
b: second int
"""
return a - b
@tool
def multiply(a:int, b:int) -> int:
"""multiply two numbers.
args:
a: first int
b: second int
"""
return a * b
@tool
def divide(a:int, b:int) -> float:
"""divide two numbers.
args:
a: first int
b: second int
"""
try:
# Attempt the division
result = a / b
return result
except ZeroDivisionError:
# Handle the case where b is zero
raise ValueError("Cannot divide by zero.")
@tool
def modulus(a:int, b:int) -> int:
"""modulus remainder of two numbers.
args:
a: first int
b: second int
"""
return a % b
# wikipedia search tool
@tool
def search_wiki(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
# internet search tool
@tool
def search_web(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
# ArXiv search tool
@tool
def search_arxiv(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# build retriever
# bm25_retriever = BM25Retriever.from_documents(docs)
# init system message
sys_msg = SystemMessage(content=system_prompt)
tools = [
add,
subtract,
multiply,
divide,
modulus,
search_wiki,
search_web,
search_arxiv
]
# build graph function
def build_graph():
# llm
llm = ChatGroq(
model="meta-llama/llama-4-scout-17b-16e-instruct",
temperature=0,
)
print(f"DEBUG: llm object = {llm}")
# bind tools to llm
llm_with_tools = llm.bind_tools(tools)
print(f"DEBUG: llm_with_tools object = {llm_with_tools}")
# generate AgentState and Agent graph
class AgentState(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
def assistant(state: AgentState):
result = llm_with_tools.invoke(state["messages"])
# Ensure the result is always wrapped in a list, even if invoke returns a single message
# Add usage information if it's not already present
if isinstance(result, AIMessage) and result.usage_metadata is None:
# Add dummy usage metadata if none exists
result.usage_metadata = {"input_tokens": 0, "output_tokens": 0, "total_tokens": 0}
return {
"messages": [result]
}
# build graph
builder = StateGraph(AgentState)
# define nodes
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
# define edges
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
{
# If the latest message requires a tool, route to tools
"tools": "tools",
# Otherwise, provide a direct response
END: END,
}
)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
graph = build_graph()
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|