Spaces:
Runtime error
Runtime error
File size: 5,164 Bytes
ec94c75 2911751 2f4dab4 c88bfe2 fdca025 c88bfe2 fdca025 3752748 fdca025 c88bfe2 ec94c75 3752748 dbcdf98 ec94c75 dbcdf98 ec94c75 fdca025 ec94c75 fdca025 ec94c75 ec17d59 840eac1 ec94c75 de77f70 ec94c75 de77f70 ec94c75 de77f70 ec94c75 de77f70 ec94c75 e9de992 ec94c75 5feff63 ec94c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import os
import cv2
from encoded_video import EncodedVideo, write_video
import torch
import numpy as np
from torchvision.datasets import ImageFolder
from transformers import ViTFeatureExtractor, ViTForImageClassification, AutoFeatureExtractor, ViTMSNForImageClassification
from pathlib import Path
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from torchmetrics import Accuracy
from torchvision import transforms
from PIL import Image
import PIL
HF_DATASETS_CACHE="./"
class ImageClassificationCollator:
def __init__(self, feature_extractor):
self.feature_extractor = feature_extractor
def __call__(self, batch):
encodings = self.feature_extractor([x[0] for x in batch], return_tensors='pt')
encodings['labels'] = torch.tensor([x[1] for x in batch], dtype=torch.long)
return encodings
class Classifier(pl.LightningModule):
def __init__(self, model, lr: float = 2e-5, **kwargs):
super().__init__()
self.save_hyperparameters('lr', *list(kwargs))
self.model = model
self.forward = self.model.forward
self.val_acc = Accuracy(
task='multiclass' if model.config.num_labels > 2 else 'binary',
num_classes=model.config.num_labels
)
def training_step(self, batch, batch_idx):
outputs = self(**batch)
self.log(f"train_loss", outputs.loss)
return outputs.loss
def validation_step(self, batch, batch_idx):
outputs = self(**batch)
self.log(f"val_loss", outputs.loss)
acc = self.val_acc(outputs.logits.argmax(1), batch['labels'])
self.log(f"val_acc", acc, prog_bar=True)
return outputs.loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams.lr)
def video_identity(video,user_name,class_name,trainortest,ready):
if ready=='yes':
data_dir = Path(str(user_name)+'/train')
train_ds = ImageFolder(data_dir)
test_dir = Path(str(user_name)+'/test')
test_ds = ImageFolder(test_dir)
label2id = {}
id2label = {}
for i, class_name in enumerate(train_ds.classes):
label2id[class_name] = str(i)
id2label[str(i)] = class_name
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
model = ViTForImageClassification.from_pretrained(
'google/vit-base-patch16-224-in21k',
num_labels=len(label2id),
label2id=label2id,
id2label=id2label
)
collator = ImageClassificationCollator(feature_extractor)
train_loader = DataLoader(train_ds, batch_size=2, collate_fn=collator, num_workers=8, shuffle=True)
test_loader = DataLoader(test_ds, batch_size=2, collate_fn=collator, num_workers=7)
val_batch = next(iter(test_loader))
outputs = model(**val_batch)
preds=outputs.logits.softmax(1).argmax(1)
# for name, param in model.named_parameters():
# param.requires_grad = False
# if name.startswith("classifier"): # choose whatever you like here
# param.requires_grad = True
# pl.seed_everything(42)
# classifier = Classifier(model, lr=2e-5)
# trainer = pl.Trainer(accelerator='gpu', devices=1, precision=16, max_epochs=3)
# trainer.fit(classifier, train_loader, test_loader)
# for batch_idx, data in enumerate(test_loader):
# outputs = model(**data)
# img=data['pixel_values'][0][0]
# preds=str(outputs.logits.softmax(1).argmax(1))
# labels=str(data['labels'])
return img, preds, labels
else:
capture = cv2.VideoCapture(video)
user_d=str(user_name)+'/'+str(trainortest)
class_d=str(user_name)+'/'+str(trainortest)+'/'+str(class_name)
if not os.path.exists(user_d):
os.makedirs(user_d)
if not os.path.exists(class_d):
os.makedirs(class_d)
frameNr = 0
while (True):
success, frame = capture.read()
if success:
cv2.imwrite(f'{class_d}/frame_{frameNr}.jpg', frame)
else:
break
frameNr = frameNr+10
img=cv2.imread(class_d+'/frame_0.jpg')
return img, trainortest, class_d
demo = gr.Interface(video_identity,
inputs=[gr.Video(source='upload'),
gr.Text(),
gr.Text(),
gr.Text(label='Which set is this? (type train or test)'),
gr.Text(label='Are you ready? (type yes or no)')],
outputs=[gr.Image(),
gr.Text(),
gr.Text()],
cache_examples=True)
demo.launch(debug=True) |