Spaces:
Runtime error
Runtime error
Ubuntu
commited on
Commit
·
de77f70
1
Parent(s):
dbcdf98
- .ipynb_checkpoints/app-checkpoint.py +16 -14
- app.py +16 -14
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -84,23 +84,25 @@ def video_identity(video,user_name,class_name,trainortest,ready):
|
|
84 |
train_loader = DataLoader(train_ds, batch_size=2, collate_fn=collator, num_workers=8, shuffle=True)
|
85 |
test_loader = DataLoader(test_ds, batch_size=2, collate_fn=collator, num_workers=7)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
return img, preds, labels
|
106 |
|
|
|
84 |
train_loader = DataLoader(train_ds, batch_size=2, collate_fn=collator, num_workers=8, shuffle=True)
|
85 |
test_loader = DataLoader(test_ds, batch_size=2, collate_fn=collator, num_workers=7)
|
86 |
|
87 |
+
val_batch = next(iter(test_loader))
|
88 |
+
outputs = model(**val_batch)
|
89 |
+
preds=outputs.logits.softmax(1).argmax(1)
|
90 |
+
# for name, param in model.named_parameters():
|
91 |
+
# param.requires_grad = False
|
92 |
+
# if name.startswith("classifier"): # choose whatever you like here
|
93 |
+
# param.requires_grad = True
|
94 |
|
95 |
+
# pl.seed_everything(42)
|
96 |
+
# classifier = Classifier(model, lr=2e-5)
|
97 |
+
# trainer = pl.Trainer(accelerator='gpu', devices=1, precision=16, max_epochs=3)
|
98 |
|
99 |
+
# trainer.fit(classifier, train_loader, test_loader)
|
100 |
|
101 |
+
# for batch_idx, data in enumerate(test_loader):
|
102 |
+
# outputs = model(**data)
|
103 |
+
# img=data['pixel_values'][0][0]
|
104 |
+
# preds=str(outputs.logits.softmax(1).argmax(1))
|
105 |
+
# labels=str(data['labels'])
|
106 |
|
107 |
return img, preds, labels
|
108 |
|
app.py
CHANGED
@@ -84,23 +84,25 @@ def video_identity(video,user_name,class_name,trainortest,ready):
|
|
84 |
train_loader = DataLoader(train_ds, batch_size=2, collate_fn=collator, num_workers=8, shuffle=True)
|
85 |
test_loader = DataLoader(test_ds, batch_size=2, collate_fn=collator, num_workers=7)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
return img, preds, labels
|
106 |
|
|
|
84 |
train_loader = DataLoader(train_ds, batch_size=2, collate_fn=collator, num_workers=8, shuffle=True)
|
85 |
test_loader = DataLoader(test_ds, batch_size=2, collate_fn=collator, num_workers=7)
|
86 |
|
87 |
+
val_batch = next(iter(test_loader))
|
88 |
+
outputs = model(**val_batch)
|
89 |
+
preds=outputs.logits.softmax(1).argmax(1)
|
90 |
+
# for name, param in model.named_parameters():
|
91 |
+
# param.requires_grad = False
|
92 |
+
# if name.startswith("classifier"): # choose whatever you like here
|
93 |
+
# param.requires_grad = True
|
94 |
|
95 |
+
# pl.seed_everything(42)
|
96 |
+
# classifier = Classifier(model, lr=2e-5)
|
97 |
+
# trainer = pl.Trainer(accelerator='gpu', devices=1, precision=16, max_epochs=3)
|
98 |
|
99 |
+
# trainer.fit(classifier, train_loader, test_loader)
|
100 |
|
101 |
+
# for batch_idx, data in enumerate(test_loader):
|
102 |
+
# outputs = model(**data)
|
103 |
+
# img=data['pixel_values'][0][0]
|
104 |
+
# preds=str(outputs.logits.softmax(1).argmax(1))
|
105 |
+
# labels=str(data['labels'])
|
106 |
|
107 |
return img, preds, labels
|
108 |
|