File size: 3,775 Bytes
20ec090
 
 
6e77739
20ec090
 
 
 
 
 
 
6e77739
20ec090
6e77739
20ec090
d4715e8
6e77739
20ec090
 
 
 
d4715e8
 
 
 
20ec090
 
6e77739
 
 
 
5d9cd28
6e77739
20ec090
 
 
 
 
 
 
417cfb8
 
 
 
 
20ec090
6e77739
20ec090
 
6e77739
 
 
 
 
 
 
20ec090
 
7303eff
417cfb8
 
7303eff
417cfb8
f4a0f65
417cfb8
0eb04fd
 
 
 
 
32850cf
0eb04fd
f4a0f65
0eb04fd
 
 
f4a0f65
0eb04fd
417cfb8
0eb04fd
6e77739
20ec090
 
 
 
6e77739
 
20ec090
 
7303eff
 
417cfb8
20ec090
 
 
6e77739
 
 
 
 
 
 
 
 
20ec090
 
6e77739
 
 
20ec090
417cfb8
7303eff
20ec090
 
cad7bb1
20ec090
6e77739
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import re
import functools
from functools import partial

import requests
import pandas as pd
import plotly.express as px

import torch
import gradio as gr
from transformers import pipeline, Wav2Vec2ProcessorWithLM
from pyannote.audio import Pipeline
import whisperx

from utils import split, create_fig
from utils import speech_to_text as stt

os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = 0 if torch.cuda.is_available() else -1

# display if the sentiment value is above these thresholds
thresholds = {"joy": 0.99,"anger": 0.95,"surprise": 0.95,"sadness": 0.98,"fear": 0.95,"love": 0.99,}

color_map = {"joy": "green","anger": "red","surprise": "yellow","sadness": "blue","fear": "orange","love": "purple",}

# Audio components
whisper_device = "cuda" if torch.cuda.is_available() else "cpu"
whisper = whisperx.load_model("tiny.en", whisper_device)
alignment_model, metadata = whisperx.load_align_model(language_code="en", device=whisper_device)
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
                                    use_auth_token=os.environ['ENO_TOKEN'])


# Text components
emotion_pipeline = pipeline(
    "text-classification",
    model="bhadresh-savani/distilbert-base-uncased-emotion",
    device=device,
)
summarization_pipeline = pipeline(
    "summarization",
    model="knkarthick/MEETING_SUMMARY",
    device=device
)

EXAMPLES = [["Customer_Support_Call.wav"]]


speech_to_text = partial(
    stt, 
    speaker_segmentation=speaker_segmentation, 
    whisper=whisper, 
    alignment_model=alignment_model, 
    metadata=metadata, 
    whisper_device=whisper_device
    )

def summarize(diarized, summarization_pipeline):
    text = ""
    for d in diarized:
        text += f"\n{d[1]}: {d[0]}"

    return summarization_pipeline(text)[0]["summary_text"]

def sentiment(diarized, emotion_pipeline):
    customer_sentiments = []

    for i in range(0, len(diarized), 2):
        speaker_speech, speaker_id = diarized[i]
        sentences = split(speaker_speech)

        if "Customer" in speaker_id:
            outputs = emotion_pipeline(sentences)
            for idx, (o, t) in enumerate(zip(outputs, sentences)):
                if o["score"] > thresholds[o["label"]]:
                    customer_sentiments.append((t, o["label"]))

    return customer_sentiments

with gr.Blocks() as demo:

    with gr.Row():
        with gr.Column():
            audio = gr.Audio(label="Audio file", type="filepath")
            btn = gr.Button("Transcribe and Diarize")

            gr.Markdown("**Call Transcript:**")
            diarized = gr.HighlightedText(label="Call Transcript")
            gr.Markdown("Summarize Speaker")
            sum_btn = gr.Button("Get Summary")
            summary = gr.Textbox(lines=4)
            sentiment_btn = gr.Button("Get Customer Sentiment")
            analyzed = gr.HighlightedText(color_map=color_map)

        with gr.Column():
            gr.Markdown("## Example Files")
            gr.Examples(
                examples=EXAMPLES,
                inputs=[audio],
                outputs=[diarized],
                fn=speech_to_text,
                cache_examples=True
            )
    # when example button is clicked, convert audio file to text and diarize
    btn.click(
        fn=speech_to_text,
        inputs=audio,
        outputs=diarized,
    )
    # when summarize checkboxes are changed, create summary
    sum_btn.click(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized], outputs=summary)

    # when sentiment button clicked, display highlighted text and plot
    sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed])

demo.launch(debug=1)