Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import functools
|
|
|
4 |
|
5 |
import requests
|
6 |
import pandas as pd
|
@@ -8,75 +9,24 @@ import plotly.express as px
|
|
8 |
|
9 |
import torch
|
10 |
import gradio as gr
|
11 |
-
from transformers import pipeline,
|
12 |
from pyannote.audio import Pipeline
|
13 |
-
|
14 |
-
from rpunct import RestorePuncts
|
15 |
|
16 |
-
from utils import split_into_sentences
|
|
|
17 |
|
18 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
device = 0 if torch.cuda.is_available() else -1
|
20 |
|
21 |
-
# summarization is done over inference API
|
22 |
-
headers = {"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}
|
23 |
-
summarization_url = (
|
24 |
-
"https://api-inference.huggingface.co/models/knkarthick/MEETING_SUMMARY"
|
25 |
-
)
|
26 |
-
|
27 |
-
# There was an error related to Non-english text being detected,
|
28 |
-
# so this regular expression gets rid of any weird character.
|
29 |
-
# This might be completely unnecessary.
|
30 |
-
eng_pattern = r"[^\d\s\w'\.\,\?]"
|
31 |
-
|
32 |
-
|
33 |
-
def summarize(diarized, check):
|
34 |
-
"""
|
35 |
-
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
|
36 |
-
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
|
37 |
-
check is a list of speaker ids whose speech will get summarized
|
38 |
-
"""
|
39 |
-
|
40 |
-
if len(check) == 0:
|
41 |
-
return ""
|
42 |
-
|
43 |
-
text = ""
|
44 |
-
for d in diarized:
|
45 |
-
if len(check) == 2 and d[1] is not None:
|
46 |
-
text += f"\n{d[1]}: {d[0]}"
|
47 |
-
elif d[1] in check:
|
48 |
-
text += f"\n{d[0]}"
|
49 |
-
|
50 |
-
# inner function cached because outer function cannot be cached
|
51 |
-
@functools.lru_cache(maxsize=128)
|
52 |
-
def call_summarize_api(text):
|
53 |
-
payload = {
|
54 |
-
"inputs": text,
|
55 |
-
"options": {
|
56 |
-
"use_gpu": False,
|
57 |
-
"wait_for_model": True,
|
58 |
-
},
|
59 |
-
}
|
60 |
-
response = requests.post(summarization_url, headers=headers, json=payload)
|
61 |
-
return response.json()[0]["summary_text"]
|
62 |
-
|
63 |
-
return call_summarize_api(text)
|
64 |
-
|
65 |
|
66 |
# Audio components
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
feature_extractor=processor.feature_extractor,
|
74 |
-
device=device,
|
75 |
-
chunk_length_s=6, # 12
|
76 |
-
stride_length_s=(2, 3), # must have with chunk_length_s
|
77 |
-
)
|
78 |
-
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-segmentation", use_auth_token='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')
|
79 |
-
rpunct = RestorePuncts()
|
80 |
|
81 |
# Text components
|
82 |
emotion_pipeline = pipeline(
|
@@ -84,168 +34,31 @@ emotion_pipeline = pipeline(
|
|
84 |
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
85 |
device=device,
|
86 |
)
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
EXAMPLES = [["
|
89 |
-
|
90 |
-
# display if the sentiment value is above these thresholds
|
91 |
-
thresholds = {
|
92 |
-
"joy": 0.99,
|
93 |
-
"anger": 0.95,
|
94 |
-
"surprise": 0.95,
|
95 |
-
"sadness": 0.98,
|
96 |
-
"fear": 0.95,
|
97 |
-
"love": 0.99,
|
98 |
-
}
|
99 |
-
|
100 |
-
|
101 |
-
def speech_to_text(speech):
|
102 |
-
speaker_output = speaker_segmentation(speech)
|
103 |
-
speech, sampling_rate = load(speech)
|
104 |
-
if sampling_rate != 16000:
|
105 |
-
speech = resample(speech, sampling_rate, 16000)
|
106 |
-
text = asr(speech)
|
107 |
-
print(text)
|
108 |
-
chunks = text["chunks"]
|
109 |
-
|
110 |
-
diarized_output = []
|
111 |
-
i = 0
|
112 |
-
speaker_counter = 0
|
113 |
-
|
114 |
-
# New iteration every time the speaker changes
|
115 |
-
for turn, _, _ in speaker_output.itertracks(yield_label=True):
|
116 |
-
|
117 |
-
speaker = "Customer" if speaker_counter % 2 == 0 else "Support"
|
118 |
-
diarized = ""
|
119 |
-
while i < len(chunks) and chunks[i]["timestamp"][1] <= turn.end:
|
120 |
-
diarized += chunks[i]["text"].lower() + " "
|
121 |
-
i += 1
|
122 |
-
|
123 |
-
if diarized != "":
|
124 |
-
diarized = rpunct.punctuate(re.sub(eng_pattern, "", diarized), lang="en")
|
125 |
-
|
126 |
-
diarized_output.extend(
|
127 |
-
[
|
128 |
-
(diarized, speaker),
|
129 |
-
("from {:.2f}-{:.2f}".format(turn.start, turn.end), None),
|
130 |
-
]
|
131 |
-
)
|
132 |
-
|
133 |
-
speaker_counter += 1
|
134 |
-
|
135 |
-
return diarized_output
|
136 |
-
|
137 |
-
|
138 |
-
def sentiment(diarized):
|
139 |
-
"""
|
140 |
-
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
|
141 |
-
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
|
142 |
-
|
143 |
-
This function gets the customer's sentiment and returns a list for highlighted text as well
|
144 |
-
as a plot of sentiment over time.
|
145 |
-
"""
|
146 |
-
|
147 |
-
customer_sentiments = []
|
148 |
-
|
149 |
-
to_plot = []
|
150 |
-
plot_sentences = []
|
151 |
-
|
152 |
-
# used to set the x range of ticks on the plot
|
153 |
-
x_min = 100
|
154 |
-
x_max = 0
|
155 |
-
|
156 |
-
for i in range(0, len(diarized), 2):
|
157 |
-
speaker_speech, speaker_id = diarized[i]
|
158 |
-
times, _ = diarized[i + 1]
|
159 |
-
|
160 |
-
sentences = split_into_sentences(speaker_speech)
|
161 |
-
start_time, end_time = times[5:].split("-")
|
162 |
-
start_time, end_time = float(start_time), float(end_time)
|
163 |
-
interval_size = (end_time - start_time) / len(sentences)
|
164 |
-
|
165 |
-
if "Customer" in speaker_id:
|
166 |
-
|
167 |
-
outputs = emotion_pipeline(sentences)
|
168 |
-
|
169 |
-
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
170 |
-
sent = "neutral"
|
171 |
-
if o["score"] > thresholds[o["label"]]:
|
172 |
-
customer_sentiments.append(
|
173 |
-
(t + f"({round(idx*interval_size+start_time,1)} s)", o["label"])
|
174 |
-
)
|
175 |
-
if o["label"] in {"joy", "love", "surprise"}:
|
176 |
-
sent = "positive"
|
177 |
-
elif o["label"] in {"sadness", "anger", "fear"}:
|
178 |
-
sent = "negative"
|
179 |
-
if sent != "neutral":
|
180 |
-
to_plot.append((start_time + idx * interval_size, sent))
|
181 |
-
plot_sentences.append(t)
|
182 |
-
|
183 |
-
if start_time < x_min:
|
184 |
-
x_min = start_time
|
185 |
-
if end_time > x_max:
|
186 |
-
x_max = end_time
|
187 |
-
|
188 |
-
x_min -= 5
|
189 |
-
x_max += 5
|
190 |
-
|
191 |
-
x, y = list(zip(*to_plot))
|
192 |
-
|
193 |
-
plot_df = pd.DataFrame(
|
194 |
-
data={
|
195 |
-
"x": x,
|
196 |
-
"y": y,
|
197 |
-
"sentence": plot_sentences,
|
198 |
-
}
|
199 |
-
)
|
200 |
|
201 |
-
fig = px.line(
|
202 |
-
plot_df,
|
203 |
-
x="x",
|
204 |
-
y="y",
|
205 |
-
hover_data={
|
206 |
-
"sentence": True,
|
207 |
-
"x": True,
|
208 |
-
"y": False,
|
209 |
-
},
|
210 |
-
labels={"x": "time (seconds)", "y": "sentiment"},
|
211 |
-
title=f"Customer sentiment over time",
|
212 |
-
)
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
220 |
)
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
demo = gr.Blocks(enable_queue=True)
|
226 |
-
demo.encrypt = False
|
227 |
|
228 |
-
# for highlighting purposes
|
229 |
-
color_map = {
|
230 |
-
"joy": "green",
|
231 |
-
"anger": "red",
|
232 |
-
"surprise": "yellow",
|
233 |
-
"sadness": "blue",
|
234 |
-
"fear": "orange",
|
235 |
-
"love": "purple",
|
236 |
-
}
|
237 |
-
|
238 |
-
with demo:
|
239 |
with gr.Row():
|
240 |
with gr.Column():
|
241 |
audio = gr.Audio(label="Audio file", type="filepath")
|
242 |
-
|
243 |
-
|
244 |
-
with gr.Row():
|
245 |
-
examples = gr.components.Dataset(
|
246 |
-
components=[audio], samples=EXAMPLES, type="index"
|
247 |
-
)
|
248 |
-
with gr.Column():
|
249 |
gr.Markdown("**Call Transcript:**")
|
250 |
diarized = gr.HighlightedText(label="Call Transcript")
|
251 |
gr.Markdown("Choose speaker to summarize:")
|
@@ -257,31 +70,26 @@ with demo:
|
|
257 |
analyzed = gr.HighlightedText(color_map=color_map)
|
258 |
plot = gr.Plot(label="Sentiment over time", type="plotly")
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
# when example button is clicked, convert audio file to text and diarize
|
261 |
btn.click(
|
262 |
-
speech_to_text,
|
263 |
-
audio,
|
264 |
-
|
265 |
-
status_tracker=gr.StatusTracker(cover_container=True),
|
266 |
)
|
267 |
# when summarize checkboxes are changed, create summary
|
268 |
-
check.change(summarize, [diarized, check], summary)
|
269 |
|
270 |
# when sentiment button clicked, display highlighted text and plot
|
271 |
-
sentiment_btn.click(sentiment,
|
272 |
-
|
273 |
-
|
274 |
-
def cache_example(example):
|
275 |
-
diarized_output = speech_to_text(example)
|
276 |
-
return audio, diarized_output
|
277 |
|
278 |
-
cache = [cache_example(e[0]) for e in EXAMPLES]
|
279 |
-
|
280 |
-
def load_example(example_id):
|
281 |
-
return cache[example_id]
|
282 |
-
|
283 |
-
examples._click_no_postprocess(
|
284 |
-
load_example, inputs=[examples], outputs=[audio, diarized], queue=False
|
285 |
-
)
|
286 |
|
287 |
-
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import functools
|
4 |
+
from functools import partial
|
5 |
|
6 |
import requests
|
7 |
import pandas as pd
|
|
|
9 |
|
10 |
import torch
|
11 |
import gradio as gr
|
12 |
+
from transformers import pipeline, Wav2Vec2ProcessorWithLM
|
13 |
from pyannote.audio import Pipeline
|
14 |
+
import whisperx
|
|
|
15 |
|
16 |
+
from utils import split_into_sentences, summarize, sentiment, color_map
|
17 |
+
from utils import speech_to_text as stt
|
18 |
|
19 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
20 |
device = 0 if torch.cuda.is_available() else -1
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Audio components
|
24 |
+
whisper_device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
whisper = whisperx.load_model("tiny.en", whisper_device)
|
26 |
+
alignment_model, metadata = whisperx.load_align_model(language_code="en", device=whisper_device)
|
27 |
+
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
|
28 |
+
use_auth_token=os.environ['HF_TOKEN'])
|
29 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# Text components
|
32 |
emotion_pipeline = pipeline(
|
|
|
34 |
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
35 |
device=device,
|
36 |
)
|
37 |
+
summarization_pipeline = pipeline(
|
38 |
+
"summarization",
|
39 |
+
model="knkarthick/MEETING_SUMMARY",
|
40 |
+
device=device
|
41 |
+
)
|
42 |
|
43 |
+
EXAMPLES = [["Customer_Support_Call.wav"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
speech_to_text = partial(
|
47 |
+
stt,
|
48 |
+
speaker_segmentation=speaker_segmentation,
|
49 |
+
whisper=whisper,
|
50 |
+
alignment_model=alignment_model,
|
51 |
+
metadata=metadata,
|
52 |
+
whisper_device=whisper_device
|
53 |
)
|
54 |
|
55 |
+
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
with gr.Row():
|
58 |
with gr.Column():
|
59 |
audio = gr.Audio(label="Audio file", type="filepath")
|
60 |
+
btn = gr.Button("Transcribe and Diarize")
|
61 |
+
|
|
|
|
|
|
|
|
|
|
|
62 |
gr.Markdown("**Call Transcript:**")
|
63 |
diarized = gr.HighlightedText(label="Call Transcript")
|
64 |
gr.Markdown("Choose speaker to summarize:")
|
|
|
70 |
analyzed = gr.HighlightedText(color_map=color_map)
|
71 |
plot = gr.Plot(label="Sentiment over time", type="plotly")
|
72 |
|
73 |
+
with gr.Column():
|
74 |
+
gr.Markdown("## Example Files")
|
75 |
+
gr.Examples(
|
76 |
+
examples=EXAMPLES,
|
77 |
+
inputs=[audio],
|
78 |
+
outputs=[diarized],
|
79 |
+
fn=speech_to_text,
|
80 |
+
cache_examples=True
|
81 |
+
)
|
82 |
# when example button is clicked, convert audio file to text and diarize
|
83 |
btn.click(
|
84 |
+
fn=speech_to_text,
|
85 |
+
inputs=audio,
|
86 |
+
outputs=diarized,
|
|
|
87 |
)
|
88 |
# when summarize checkboxes are changed, create summary
|
89 |
+
check.change(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized, check], outputs=summary)
|
90 |
|
91 |
# when sentiment button clicked, display highlighted text and plot
|
92 |
+
sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed, plot])
|
|
|
|
|
|
|
|
|
|
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
demo.launch(debug=1)
|