Spaces:
Build error
Build error
File size: 3,016 Bytes
20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 5d9cd28 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import os
import re
import functools
from functools import partial
import requests
import pandas as pd
import plotly.express as px
import torch
import gradio as gr
from transformers import pipeline, Wav2Vec2ProcessorWithLM
from pyannote.audio import Pipeline
import whisperx
from utils import split_into_sentences, summarize, sentiment, color_map
from utils import speech_to_text as stt
os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = 0 if torch.cuda.is_available() else -1
# Audio components
whisper_device = "cuda" if torch.cuda.is_available() else "cpu"
whisper = whisperx.load_model("tiny.en", whisper_device)
alignment_model, metadata = whisperx.load_align_model(language_code="en", device=whisper_device)
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
use_auth_token=os.environ['ENO_TOKEN'])
# Text components
emotion_pipeline = pipeline(
"text-classification",
model="bhadresh-savani/distilbert-base-uncased-emotion",
device=device,
)
summarization_pipeline = pipeline(
"summarization",
model="knkarthick/MEETING_SUMMARY",
device=device
)
EXAMPLES = [["Customer_Support_Call.wav"]]
speech_to_text = partial(
stt,
speaker_segmentation=speaker_segmentation,
whisper=whisper,
alignment_model=alignment_model,
metadata=metadata,
whisper_device=whisper_device
)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
audio = gr.Audio(label="Audio file", type="filepath")
btn = gr.Button("Transcribe and Diarize")
gr.Markdown("**Call Transcript:**")
diarized = gr.HighlightedText(label="Call Transcript")
gr.Markdown("Choose speaker to summarize:")
check = gr.CheckboxGroup(
choices=["Customer", "Support"], show_label=False, type="value"
)
summary = gr.Textbox(lines=4)
sentiment_btn = gr.Button("Get Customer Sentiment")
analyzed = gr.HighlightedText(color_map=color_map)
plot = gr.Plot(label="Sentiment over time", type="plotly")
with gr.Column():
gr.Markdown("## Example Files")
gr.Examples(
examples=EXAMPLES,
inputs=[audio],
outputs=[diarized],
fn=speech_to_text,
cache_examples=True
)
# when example button is clicked, convert audio file to text and diarize
btn.click(
fn=speech_to_text,
inputs=audio,
outputs=diarized,
)
# when summarize checkboxes are changed, create summary
check.change(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized, check], outputs=summary)
# when sentiment button clicked, display highlighted text and plot
sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed, plot])
demo.launch(debug=1) |