File size: 5,109 Bytes
20ec090
 
 
6e77739
20ec090
 
 
 
 
 
 
6e77739
20ec090
6e77739
20ec090
e80a9ef
6e77739
20ec090
 
 
 
 
 
6e77739
 
 
 
5d9cd28
6e77739
20ec090
 
 
 
 
 
 
417cfb8
 
 
 
 
20ec090
6e77739
20ec090
 
6e77739
 
 
 
 
 
 
20ec090
 
417cfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb04fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417cfb8
0eb04fd
6e77739
20ec090
 
 
 
6e77739
 
20ec090
 
417cfb8
 
 
 
 
20ec090
 
 
 
6e77739
 
 
 
 
 
 
 
 
20ec090
 
6e77739
 
 
20ec090
417cfb8
 
20ec090
 
6e77739
20ec090
6e77739
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import re
import functools
from functools import partial

import requests
import pandas as pd
import plotly.express as px

import torch
import gradio as gr
from transformers import pipeline, Wav2Vec2ProcessorWithLM
from pyannote.audio import Pipeline
import whisperx

from utils import split_into_sentences, create_fig, color_map, thresholds
from utils import speech_to_text as stt

os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = 0 if torch.cuda.is_available() else -1


# Audio components
whisper_device = "cuda" if torch.cuda.is_available() else "cpu"
whisper = whisperx.load_model("tiny.en", whisper_device)
alignment_model, metadata = whisperx.load_align_model(language_code="en", device=whisper_device)
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
                                    use_auth_token=os.environ['ENO_TOKEN'])


# Text components
emotion_pipeline = pipeline(
    "text-classification",
    model="bhadresh-savani/distilbert-base-uncased-emotion",
    device=device,
)
summarization_pipeline = pipeline(
    "summarization",
    model="knkarthick/MEETING_SUMMARY",
    device=device
)

EXAMPLES = [["Customer_Support_Call.wav"]]


speech_to_text = partial(
    stt, 
    speaker_segmentation=speaker_segmentation, 
    whisper=whisper, 
    alignment_model=alignment_model, 
    metadata=metadata, 
    whisper_device=whisper_device
    )

def summarize(diarized, check, summarization_pipeline):
    """
    diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
        The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
    check is a list of speaker ids whose speech will get summarized
    """

    if len(check) == 0:
        return ""

    text = ""
    for d in diarized:
        if len(check) == 2 and d[1] is not None:
            text += f"\n{d[1]}: {d[0]}"
        elif d[1] in check:
            text += f"\n{d[0]}"

    # inner function cached because outer function cannot be cached
    @functools.lru_cache(maxsize=128)
    def call_summarize_api(text):
        return summarization_pipeline(text)[0]["summary_text"]

    return call_summarize_api(text)

def sentiment(diarized, emotion_pipeline):
    """
    diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
        The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]

    This function gets the customer's sentiment and returns a list for highlighted text as well
    as a plot of sentiment over time.
    """

    customer_sentiments = []

    for i in range(0, len(diarized), 2):
        speaker_speech, speaker_id = diarized[i]
        times, _ = diarized[i + 1]

        sentences = split_into_sentences(speaker_speech)
        if "Customer" in speaker_id:

            outputs = emotion_pipeline(sentences)

            for idx, (o, t) in enumerate(zip(outputs, sentences)):
                sent = "neutral"
                if o["score"] > thresholds[o["label"]]:
                    customer_sentiments.append(
                        (t + f"({round(idx*interval_size+start_time,1)} s)", o["label"])
                    )
                    if o["label"] in {"joy", "love", "surprise"}:
                        sent = "positive"
                    elif o["label"] in {"sadness", "anger", "fear"}:
                        sent = "negative"

    return customer_sentiments

with gr.Blocks() as demo:

    with gr.Row():
        with gr.Column():
            audio = gr.Audio(label="Audio file", type="filepath")
            btn = gr.Button("Transcribe and Diarize")

            gr.Markdown("**Call Transcript:**")
            diarized = gr.HighlightedText(label="Call Transcript")
            gr.Markdown("Choose speaker to summarize:")
            check = gr.CheckboxGroup(
                choices=["Customer", "Support"], show_label=False, type="value"
            )
            summary = gr.Textbox(lines=4)
            sentiment_btn = gr.Button("Get Customer Sentiment")
            analyzed = gr.HighlightedText(color_map=color_map)
            plot = gr.Plot(label="Sentiment over time", type="plotly")

        with gr.Column():
            gr.Markdown("## Example Files")
            gr.Examples(
                examples=EXAMPLES,
                inputs=[audio],
                outputs=[diarized],
                fn=speech_to_text,
                cache_examples=True
            )
    # when example button is clicked, convert audio file to text and diarize
    btn.click(
        fn=speech_to_text,
        inputs=audio,
        outputs=diarized,
    )
    # when summarize checkboxes are changed, create summary
    check.change(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized, check], outputs=summary)

    # when sentiment button clicked, display highlighted text and plot
    sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed, plot])

demo.launch(debug=1)