Spaces:
Build error
Build error
File size: 5,109 Bytes
20ec090 6e77739 20ec090 6e77739 20ec090 6e77739 20ec090 e80a9ef 6e77739 20ec090 6e77739 5d9cd28 6e77739 20ec090 417cfb8 20ec090 6e77739 20ec090 6e77739 20ec090 417cfb8 0eb04fd 417cfb8 0eb04fd 6e77739 20ec090 6e77739 20ec090 417cfb8 20ec090 6e77739 20ec090 6e77739 20ec090 417cfb8 20ec090 6e77739 20ec090 6e77739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import re
import functools
from functools import partial
import requests
import pandas as pd
import plotly.express as px
import torch
import gradio as gr
from transformers import pipeline, Wav2Vec2ProcessorWithLM
from pyannote.audio import Pipeline
import whisperx
from utils import split_into_sentences, create_fig, color_map, thresholds
from utils import speech_to_text as stt
os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = 0 if torch.cuda.is_available() else -1
# Audio components
whisper_device = "cuda" if torch.cuda.is_available() else "cpu"
whisper = whisperx.load_model("tiny.en", whisper_device)
alignment_model, metadata = whisperx.load_align_model(language_code="en", device=whisper_device)
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-diarization@2.1",
use_auth_token=os.environ['ENO_TOKEN'])
# Text components
emotion_pipeline = pipeline(
"text-classification",
model="bhadresh-savani/distilbert-base-uncased-emotion",
device=device,
)
summarization_pipeline = pipeline(
"summarization",
model="knkarthick/MEETING_SUMMARY",
device=device
)
EXAMPLES = [["Customer_Support_Call.wav"]]
speech_to_text = partial(
stt,
speaker_segmentation=speaker_segmentation,
whisper=whisper,
alignment_model=alignment_model,
metadata=metadata,
whisper_device=whisper_device
)
def summarize(diarized, check, summarization_pipeline):
"""
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
check is a list of speaker ids whose speech will get summarized
"""
if len(check) == 0:
return ""
text = ""
for d in diarized:
if len(check) == 2 and d[1] is not None:
text += f"\n{d[1]}: {d[0]}"
elif d[1] in check:
text += f"\n{d[0]}"
# inner function cached because outer function cannot be cached
@functools.lru_cache(maxsize=128)
def call_summarize_api(text):
return summarization_pipeline(text)[0]["summary_text"]
return call_summarize_api(text)
def sentiment(diarized, emotion_pipeline):
"""
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
This function gets the customer's sentiment and returns a list for highlighted text as well
as a plot of sentiment over time.
"""
customer_sentiments = []
for i in range(0, len(diarized), 2):
speaker_speech, speaker_id = diarized[i]
times, _ = diarized[i + 1]
sentences = split_into_sentences(speaker_speech)
if "Customer" in speaker_id:
outputs = emotion_pipeline(sentences)
for idx, (o, t) in enumerate(zip(outputs, sentences)):
sent = "neutral"
if o["score"] > thresholds[o["label"]]:
customer_sentiments.append(
(t + f"({round(idx*interval_size+start_time,1)} s)", o["label"])
)
if o["label"] in {"joy", "love", "surprise"}:
sent = "positive"
elif o["label"] in {"sadness", "anger", "fear"}:
sent = "negative"
return customer_sentiments
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
audio = gr.Audio(label="Audio file", type="filepath")
btn = gr.Button("Transcribe and Diarize")
gr.Markdown("**Call Transcript:**")
diarized = gr.HighlightedText(label="Call Transcript")
gr.Markdown("Choose speaker to summarize:")
check = gr.CheckboxGroup(
choices=["Customer", "Support"], show_label=False, type="value"
)
summary = gr.Textbox(lines=4)
sentiment_btn = gr.Button("Get Customer Sentiment")
analyzed = gr.HighlightedText(color_map=color_map)
plot = gr.Plot(label="Sentiment over time", type="plotly")
with gr.Column():
gr.Markdown("## Example Files")
gr.Examples(
examples=EXAMPLES,
inputs=[audio],
outputs=[diarized],
fn=speech_to_text,
cache_examples=True
)
# when example button is clicked, convert audio file to text and diarize
btn.click(
fn=speech_to_text,
inputs=audio,
outputs=diarized,
)
# when summarize checkboxes are changed, create summary
check.change(fn=partial(summarize, summarization_pipeline=summarization_pipeline), inputs=[diarized, check], outputs=summary)
# when sentiment button clicked, display highlighted text and plot
sentiment_btn.click(fn=partial(sentiment, emotion_pipeline=emotion_pipeline), inputs=diarized, outputs=[analyzed, plot])
demo.launch(debug=1) |