File size: 11,712 Bytes
704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b 08879a1 704ce7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
# !pip install gradio -q
# !pip install transformers -q
# %%
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
from matplotlib.ticker import MaxNLocator
from transformers import pipeline
# %%
MODEL_NAMES = [
"bert-base-uncased",
"roberta-base",
"bert-large-uncased",
"roberta-large",
]
OWN_MODEL_NAME = "add-a-model"
DECIMAL_PLACES = 1
EPS = 1e-5 # to avoid /0 errors
# %%
# Fire up the models
models = dict()
for bert_like in MODEL_NAMES:
models[bert_like] = pipeline("fill-mask", model=bert_like)
# %%
def clean_tokens(tokens):
return [token.strip() for token in tokens]
def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
text_w_masks_list = [
mask_token if word.lower() in gendered_tokens else word
for word in input_text.split()
]
num_masks = len([m for m in text_w_masks_list if m == mask_token])
text_portions = " ".join(text_w_masks_list).split(split_key)
return text_portions, num_masks
def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
pronoun_preds = [
sum(
[
pronoun["score"]
if pronoun["token_str"].strip().lower() in gendered_token
else 0.0
for pronoun in top_preds
]
)
for top_preds in mask_filled_text
]
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
def get_figure(df, gender, n_fit=1):
df = df.set_index("x-axis")
cols = df.columns
xs = list(range(len(df)))
ys = df[cols[0]]
fig, ax = plt.subplots()
# Trying small fig due to rendering issues on HF, not on VS Code
fig.set_figheight(3)
fig.set_figwidth(9)
# find stackoverflow reference
p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
t = np.linspace(min(xs) - 1, max(xs) + 1, 10 * len(xs))
TT = np.vstack([t ** (n_fit - i) for i in range(n_fit + 1)]).T
# matrix multiplication calculates the polynomial values
yi = np.dot(TT, p)
C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
ax.fill_between(t, yi + sig_yi, yi - sig_yi, alpha=0.25)
ax.plot(t, yi, "-")
ax.plot(df, "ro")
ax.legend(list(df.columns))
ax.axis("tight")
ax.set_xlabel("Value injected into input text")
ax.set_title(f"Probability of predicting {gender} tokens.")
ax.set_ylabel(f"Softmax prob")
ax.tick_params(axis="x", labelrotation=5)
ax.set_ylim(0, 100)
return fig
# %%
def predict_masked_tokens(
model_name,
own_model_name,
group_a_tokens,
group_b_tokens,
indie_vars,
split_key,
normalizing,
n_fit,
input_text,
):
"""Run inference on input_text for each model type, returning df and plots of percentage
of gender pronouns predicted as female and male in each target text.
"""
if model_name not in MODEL_NAMES:
model = pipeline("fill-mask", model=own_model_name)
else:
model = models[model_name]
mask_token = model.tokenizer.mask_token
indie_vars_list = indie_vars.split(",")
group_a_tokens = clean_tokens(group_a_tokens.split(","))
group_b_tokens = clean_tokens(group_b_tokens.split(","))
text_segments, num_preds = prepare_text_for_masking(
input_text, mask_token, group_b_tokens + group_a_tokens, split_key
)
male_pronoun_preds = []
female_pronoun_preds = []
for indie_var in indie_vars_list:
target_text = f"{indie_var}".join(text_segments)
mask_filled_text = model(target_text)
# Quick hack as realized return type based on how many MASKs in text.
if type(mask_filled_text[0]) is not list:
mask_filled_text = [mask_filled_text]
female_pronoun_preds.append(
get_avg_prob_from_pipeline_outputs(
mask_filled_text, group_a_tokens, num_preds
)
)
male_pronoun_preds.append(
get_avg_prob_from_pipeline_outputs(
mask_filled_text, group_b_tokens, num_preds
)
)
if normalizing:
total_gendered_probs = np.add(female_pronoun_preds, male_pronoun_preds)
female_pronoun_preds = np.around(
np.divide(female_pronoun_preds, total_gendered_probs + EPS) * 100,
decimals=DECIMAL_PLACES,
)
male_pronoun_preds = np.around(
np.divide(male_pronoun_preds, total_gendered_probs + EPS) * 100,
decimals=DECIMAL_PLACES,
)
results_df = pd.DataFrame({"x-axis": indie_vars_list})
results_df["group_a"] = female_pronoun_preds
results_df["group_b"] = male_pronoun_preds
female_fig = get_figure(
results_df.drop("group_b", axis=1),
"group_a",
n_fit,
)
male_fig = get_figure(
results_df.drop("group_a", axis=1),
"group_b",
n_fit,
)
display_text = f"{random.choice(indie_vars_list)}".join(text_segments)
return (
display_text,
female_fig,
male_fig,
results_df,
)
truck_fn_example = [
MODEL_NAMES[2],
"",
", ".join(["truck", "pickup"]),
", ".join(["car", "sedan"]),
", ".join(["city", "neighborhood", "farm"]),
"PLACE",
"True",
1,
]
def truck_1_fn():
return truck_fn_example + ["He loaded up his truck and drove to the PLACE."]
def truck_2_fn():
return truck_fn_example + [
"He loaded up the bed of his truck and drove to the PLACE."
]
# # %%
demo = gr.Blocks()
with demo:
gr.Markdown("# Spurious Correlation Evaluation for Pre-trained LLMs")
gr.Markdown("## Instructions for this Demo")
gr.Markdown(
"1) Click on one of the examples below to pre-populate the input fields."
)
gr.Markdown(
"2) Check out the pre-populated fields as you scroll down to the ['Hit Submit...'] button!"
)
gr.Markdown(
"3) Repeat steps (1) and (2) with more pre-populated inputs or with your own values in the input fields!"
)
gr.Markdown(
"""The pre-populated inputs below are for a demo example of a location-vs-vehicle-type spurious correlation.
We can see this spurious correlation largely disappears in the well-specified example text.
<p align="center">
<img src="file/non_well_spec.png" alt="results" width="300"/>
</p>
<p align="center">
<img src="file/well_spec.png" alt="results" width="300"/>
</p>
"""
)
gr.Markdown("## Example inputs")
gr.Markdown(
"Click a button below to pre-populate input fields with example values. Then scroll down to Hit Submit to generate predictions."
)
with gr.Row():
truck_1_gen = gr.Button(
"Click for non-well-specified(?) vehicle-type example inputs"
)
gr.Markdown(
"<-- Multiple solutions with low training error. LLM sensitive to spurious(?) correlations."
)
truck_2_gen = gr.Button("Click for well-specified vehicle-type example inputs")
gr.Markdown(
"<-- Fewer solutions with low training error. LLM less sensitive to spurious(?) correlations."
)
gr.Markdown("## Input fields")
gr.Markdown(
f"A) Pick a spectrum of comma separated values for text injection and x-axis."
)
with gr.Row():
group_a_tokens = gr.Textbox(
type="text",
lines=3,
label="A) To-MASK tokens A: Comma separated words that account for accumulated group A softmax probs",
)
group_b_tokens = gr.Textbox(
type="text",
lines=3,
label="B) To-MASK tokens B: Comma separated words that account for accumulated group B softmax probs",
)
with gr.Row():
x_axis = gr.Textbox(
type="text",
lines=3,
label="C) Comma separated values for text injection and x-axis",
)
gr.Markdown("D) Pick a pre-loaded BERT-family model of interest on the right.")
gr.Markdown(
f"Or E) select `{OWN_MODEL_NAME}`, then add the mame of any other Hugging Face model that supports the [fill-mask](https://huggingface.co/models?pipeline_tag=fill-mask) task on the right (note: this may take some time to load)."
)
with gr.Row():
model_name = gr.Radio(
MODEL_NAMES + [OWN_MODEL_NAME],
type="value",
label="D) BERT-like model.",
)
own_model_name = gr.Textbox(
label="E) If you selected an 'add-a-model' model, put any Hugging Face pipeline model name (that supports the fill-mask task) here.",
)
gr.Markdown(
"F) Pick if you want to the predictions normalied to only those from group A or B."
)
gr.Markdown(
"G) Also tell the demo what special token you will use in your input text, that you would like replaced with the spectrum of values you listed above."
)
gr.Markdown(
"And H) the degree of polynomial fit used for high-lighting potential spurious association."
)
with gr.Row():
to_normalize = gr.Dropdown(
["False", "True"],
label="D) Normalize model's predictions?",
type="index",
)
place_holder = gr.Textbox(
label="E) Special token place-holder",
)
n_fit = gr.Dropdown(
list(range(1, 5)),
label="F) Degree of polynomial fit",
type="value",
)
gr.Markdown(
"I) Finally, add input text that includes at least one of the '`To-MASK`' tokens from (A) or (B) and one place-holder token from (G)."
)
with gr.Row():
input_text = gr.Textbox(
lines=2,
label="I) Input text with a '`To-MASK`' and place-holder token",
)
gr.Markdown("## Outputs!")
with gr.Row():
btn = gr.Button("Hit submit to generate predictions!")
with gr.Row():
sample_text = gr.Textbox(
type="text", label="Output text: Sample of text fed to model"
)
with gr.Row():
female_fig = gr.Plot(type="auto")
male_fig = gr.Plot(type="auto")
with gr.Row():
df = gr.Dataframe(
show_label=True,
overflow_row_behaviour="show_ends",
label="Table of softmax probability for grouped predictions",
)
with gr.Row():
truck_1_gen.click(
truck_1_fn,
inputs=[],
outputs=[
model_name,
own_model_name,
group_a_tokens,
group_b_tokens,
x_axis,
place_holder,
to_normalize,
n_fit,
input_text,
],
)
truck_2_gen.click(
truck_2_fn,
inputs=[],
outputs=[
model_name,
own_model_name,
group_a_tokens,
group_b_tokens,
x_axis,
place_holder,
to_normalize,
n_fit,
input_text,
],
)
btn.click(
predict_masked_tokens,
inputs=[
model_name,
own_model_name,
group_a_tokens,
group_b_tokens,
x_axis,
place_holder,
to_normalize,
n_fit,
input_text,
],
outputs=[sample_text, female_fig, male_fig, df],
)
demo.launch(debug=True)
# %%
|