File size: 13,591 Bytes
6ec60d5
 
5238467
6ec60d5
 
5238467
6457900
 
5238467
8e10a53
6ec60d5
 
 
 
 
 
 
5238467
 
6ec60d5
 
1897b6f
6ec60d5
1897b6f
5238467
6ec60d5
 
3373345
6ec60d5
6457900
6ec60d5
 
5238467
6ec60d5
 
 
 
 
 
5238467
 
6ec60d5
 
6457900
6ec60d5
5238467
 
6457900
 
 
5238467
56d7528
6ec60d5
 
 
 
 
 
 
 
 
 
 
5238467
6ec60d5
 
 
5238467
 
56d7528
6ec60d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5238467
4cf6900
6ec60d5
 
 
 
56d7528
5238467
 
56d7528
6ec60d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6457900
 
 
2e0c668
 
 
 
 
 
 
6ec60d5
 
5238467
6457900
 
 
 
 
5238467
6ec60d5
56d7528
4cf6900
6ec60d5
5238467
 
6ec60d5
8e10a53
 
 
 
925b7f8
 
8e10a53
 
 
 
 
 
 
 
 
6457900
 
8e10a53
 
 
4cf6900
8e10a53
 
 
 
 
 
 
6ec60d5
8e10a53
6ec60d5
8e10a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fe483
8e10a53
4cf6900
 
 
 
 
6457900
 
23fe483
8e10a53
 
 
 
 
23fe483
8e10a53
 
23fe483
8e10a53
 
 
 
 
5238467
6457900
8e10a53
 
6ec60d5
 
 
 
 
8e10a53
6ec60d5
 
 
13ef076
6ec60d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23fe483
8e10a53
 
 
 
 
 
6ec60d5
8e10a53
5238467
8e10a53
 
 
 
 
5238467
8e10a53
 
 
 
 
1897b6f
8e10a53
 
 
 
 
 
 
 
5238467
6ec60d5
56d7528
 
6ec60d5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
# also released under the MIT license.

import argparse
from concurrent.futures import ProcessPoolExecutor
import os
import subprocess as sp
from tempfile import NamedTemporaryFile
import time
import warnings

import torch
import gradio as gr

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen


MODEL = None  # Last used model
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
INTERRUPTING = False
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call


def _call_nostderr(*args, **kwargs):
    # Avoid ffmpeg vomitting on the logs.
    kwargs['stderr'] = sp.DEVNULL
    kwargs['stdout'] = sp.DEVNULL
    _old_call(*args, **kwargs)


sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()


def interrupt():
    global INTERRUPTING
    INTERRUPTING = True


def make_waveform(*args, **kwargs):
    # Further remove some warnings.
    be = time.time()
    with warnings.catch_warnings():
        warnings.simplefilter('ignore')
        out = gr.make_waveform(*args, **kwargs)
        print("Make a video took", time.time() - be)
        return out


def load_model(version='melody'):
    global MODEL
    print("Loading model", version)
    if MODEL is None or MODEL.name != version:
        MODEL = MusicGen.get_pretrained(version)


def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
    MODEL.set_generation_params(duration=duration, **gen_kwargs)
    print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
    be = time.time()
    processed_melodies = []
    target_sr = 32000
    target_ac = 1
    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
            if melody.dim() == 1:
                melody = melody[None]
            melody = melody[..., :int(sr * duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            processed_melodies.append(melody)

    if any(m is not None for m in processed_melodies):
        outputs = MODEL.generate_with_chroma(
            descriptions=texts,
            melody_wavs=processed_melodies,
            melody_sample_rate=target_sr,
            progress=progress,
        )
    else:
        outputs = MODEL.generate(texts, progress=progress)

    outputs = outputs.detach().cpu().float()
    out_files = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name, output, MODEL.sample_rate, strategy="loudness",
                loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
            out_files.append(pool.submit(make_waveform, file.name))
    res = [out_file.result() for out_file in out_files]
    print("batch finished", len(texts), time.time() - be)
    return res


def predict_batched(texts, melodies):
    max_text_length = 512
    texts = [text[:max_text_length] for text in texts]
    load_model('melody')
    res = _do_predictions(texts, melodies, BATCHED_DURATION)
    return [res]


def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
    global INTERRUPTING
    INTERRUPTING = False
    if temperature < 0:
        raise gr.Error("Temperature must be >= 0.")
    if topk < 0:
        raise gr.Error("Topk must be non-negative.")
    if topp < 0:
        raise gr.Error("Topp must be non-negative.")

    topk = int(topk)
    load_model(model)

    def _progress(generated, to_generate):
        progress((generated, to_generate))
        if INTERRUPTING:
            raise gr.Error("Interrupted.")
    MODEL.set_custom_progress_callback(_progress)

    outs = _do_predictions(
        [text], [melody], duration, progress=True,
        top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
    return outs[0]


def ui_full(launch_kwargs):
    with gr.Blocks() as interface:
        gr.Markdown(
            """
            # MusicGen
            This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Input Text", interactive=True)
                    melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
                with gr.Row():
                    submit = gr.Button("Submit")
                    # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
                    _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
                with gr.Row():
                    model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
                with gr.Row():
                    duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
                with gr.Row():
                    topk = gr.Number(label="Top-k", value=250, interactive=True)
                    topp = gr.Number(label="Top-p", value=0, interactive=True)
                    temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
                    cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
            with gr.Column():
                output = gr.Video(label="Generated Music")
        submit.click(predict_full, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output])
        gr.Examples(
            fn=predict_full,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                    "melody"
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                    "melody"
                ],
                [
                    "90s rock song with electric guitar and heavy drums",
                    None,
                    "medium"
                ],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
                    "./assets/bach.mp3",
                    "melody"
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                    "medium",
                ],
            ],
            inputs=[text, melody, model],
            outputs=[output]
        )
        gr.Markdown(
            """
            ### More details

            The model will generate a short music extract based on the description you provided.
            The model can generate up to 30 seconds of audio in one pass. It is now possible
            to extend the generation by feeding back the end of the previous chunk of audio.
            This can take a long time, and the model might lose consistency. The model might also
            decide at arbitrary positions that the song ends.

            **WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). An overlap of 12 seconds
            is kept with the previously generated chunk, and 18 "new" seconds are generated each time.

            We present 4 model variations:
            1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
            2. Small -- a 300M transformer decoder conditioned on text only.
            3. Medium -- a 1.5B transformer decoder conditioned on text only.
            4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.)

            When using `melody`, ou can optionaly provide a reference audio from
            which a broad melody will be extracted. The model will then try to follow both the description and melody provided.

            You can also use your own GPU or a Google Colab by following the instructions on our repo.
            See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
            for more details.
            """
        )

        interface.queue().launch(**launch_kwargs)


def ui_batched(launch_kwargs):
    with gr.Blocks() as demo:
        gr.Markdown(
            """
            # MusicGen

            This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
            presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
            <br/>
            <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
            <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
            for longer sequences, more control and no queue.</p>
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    text = gr.Text(label="Describe your music", lines=2, interactive=True)
                    melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True)
                with gr.Row():
                    submit = gr.Button("Generate")
            with gr.Column():
                output = gr.Video(label="Generated Music")
        submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
        gr.Examples(
            fn=predict_batched,
            examples=[
                [
                    "An 80s driving pop song with heavy drums and synth pads in the background",
                    "./assets/bach.mp3",
                ],
                [
                    "A cheerful country song with acoustic guitars",
                    "./assets/bolero_ravel.mp3",
                ],
                [
                    "90s rock song with electric guitar and heavy drums",
                    None,
                ],
                [
                    "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
                    "./assets/bach.mp3",
                ],
                [
                    "lofi slow bpm electro chill with organic samples",
                    None,
                ],
            ],
            inputs=[text, melody],
            outputs=[output]
        )
        gr.Markdown("""
        ### More details

        The model will generate 12 seconds of audio based on the description you provided.
        You can optionaly provide a reference audio from which a broad melody will be extracted.
        The model will then try to follow both the description and melody provided.
        All samples are generated with the `melody` model.

        You can also use your own GPU or a Google Colab by following the instructions on our repo.

        See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
        for more details.
        """)

        demo.queue(max_size=8 * 4).launch(**launch_kwargs)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--listen',
        type=str,
        default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
        help='IP to listen on for connections to Gradio',
    )
    parser.add_argument(
        '--username', type=str, default='', help='Username for authentication'
    )
    parser.add_argument(
        '--password', type=str, default='', help='Password for authentication'
    )
    parser.add_argument(
        '--server_port',
        type=int,
        default=0,
        help='Port to run the server listener on',
    )
    parser.add_argument(
        '--inbrowser', action='store_true', help='Open in browser'
    )
    parser.add_argument(
        '--share', action='store_true', help='Share the gradio UI'
    )

    args = parser.parse_args()

    launch_kwargs = {}
    launch_kwargs['server_name'] = args.listen

    if args.username and args.password:
        launch_kwargs['auth'] = (args.username, args.password)
    if args.server_port:
        launch_kwargs['server_port'] = args.server_port
    if args.inbrowser:
        launch_kwargs['inbrowser'] = args.inbrowser
    if args.share:
        launch_kwargs['share'] = args.share

    # Show the interface
    if IS_BATCHED:
        ui_batched(launch_kwargs)
    else:
        ui_full(launch_kwargs)