Spaces:
Build error
Build error
plop
Browse files- README.md +6 -5
- app.py +25 -10
- audiocraft/models/musicgen.py +6 -2
README.md
CHANGED
@@ -38,11 +38,12 @@ pip install -e . # or if you cloned the repo locally
|
|
38 |
|
39 |
## Usage
|
40 |
We offer a number of way to interact with MusicGen:
|
41 |
-
1.
|
42 |
-
2. You can
|
43 |
-
3.
|
44 |
-
4.
|
45 |
-
|
|
|
46 |
|
47 |
## API
|
48 |
|
|
|
38 |
|
39 |
## Usage
|
40 |
We offer a number of way to interact with MusicGen:
|
41 |
+
1. A demo is also available on the [`facebook/MusicGen` HuggingFace Space](https://huggingface.co/spaces/facebook/MusicGen) (huge thanks to all the HF team for their support).
|
42 |
+
2. You can run the extended demo on a Colab: [colab notebook](https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing).
|
43 |
+
3. You can use the gradio demo locally by running `python app.py`.
|
44 |
+
4. You can play with MusicGen by running the jupyter notebook at [`demo.ipynb`](./demo.ipynb) locally (if you have a GPU).
|
45 |
+
5. Finally, checkout [@camenduru Colab page](https://github.com/camenduru/MusicGen-colab) which is regularly
|
46 |
+
updated with contributions from @camenduru and the community.
|
47 |
|
48 |
## API
|
49 |
|
app.py
CHANGED
@@ -4,6 +4,9 @@
|
|
4 |
# This source code is licensed under the license found in the
|
5 |
# LICENSE file in the root directory of this source tree.
|
6 |
|
|
|
|
|
|
|
7 |
import argparse
|
8 |
from concurrent.futures import ProcessPoolExecutor
|
9 |
import os
|
@@ -22,8 +25,9 @@ from audiocraft.models import MusicGen
|
|
22 |
|
23 |
MODEL = None # Last used model
|
24 |
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
|
25 |
-
MAX_BATCH_SIZE =
|
26 |
BATCHED_DURATION = 15
|
|
|
27 |
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
|
28 |
_old_call = sp.call
|
29 |
|
@@ -37,10 +41,14 @@ def _call_nostderr(*args, **kwargs):
|
|
37 |
|
38 |
sp.call = _call_nostderr
|
39 |
# Preallocating the pool of processes.
|
40 |
-
pool = ProcessPoolExecutor(
|
41 |
pool.__enter__()
|
42 |
|
43 |
|
|
|
|
|
|
|
|
|
44 |
def make_waveform(*args, **kwargs):
|
45 |
# Further remove some warnings.
|
46 |
be = time.time()
|
@@ -59,9 +67,6 @@ def load_model(version='melody'):
|
|
59 |
|
60 |
|
61 |
def _do_predictions(texts, melodies, duration, **gen_kwargs):
|
62 |
-
if duration > MODEL.lm.cfg.dataset.segment_duration:
|
63 |
-
raise gr.Error("MusicGen currently supports durations of up to 30 seconds!")
|
64 |
-
|
65 |
MODEL.set_generation_params(duration=duration, **gen_kwargs)
|
66 |
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
|
67 |
be = time.time()
|
@@ -84,10 +89,10 @@ def _do_predictions(texts, melodies, duration, **gen_kwargs):
|
|
84 |
descriptions=texts,
|
85 |
melody_wavs=processed_melodies,
|
86 |
melody_sample_rate=target_sr,
|
87 |
-
progress=
|
88 |
)
|
89 |
else:
|
90 |
-
outputs = MODEL.generate(texts, progress=
|
91 |
|
92 |
outputs = outputs.detach().cpu().float()
|
93 |
out_files = []
|
@@ -110,9 +115,16 @@ def predict_batched(texts, melodies):
|
|
110 |
return [res]
|
111 |
|
112 |
|
113 |
-
def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef):
|
|
|
|
|
114 |
topk = int(topk)
|
115 |
load_model(model)
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
outs = _do_predictions(
|
118 |
[text], [melody], duration,
|
@@ -136,6 +148,8 @@ def ui_full(launch_kwargs):
|
|
136 |
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
|
137 |
with gr.Row():
|
138 |
submit = gr.Button("Submit")
|
|
|
|
|
139 |
with gr.Row():
|
140 |
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
|
141 |
with gr.Row():
|
@@ -190,7 +204,8 @@ def ui_full(launch_kwargs):
|
|
190 |
This can take a long time, and the model might lose consistency. The model might also
|
191 |
decide at arbitrary positions that the song ends.
|
192 |
|
193 |
-
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
|
|
|
194 |
|
195 |
We present 4 model variations:
|
196 |
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
|
@@ -207,7 +222,7 @@ def ui_full(launch_kwargs):
|
|
207 |
"""
|
208 |
)
|
209 |
|
210 |
-
interface.queue().launch(**launch_kwargs
|
211 |
|
212 |
|
213 |
def ui_batched(launch_kwargs):
|
|
|
4 |
# This source code is licensed under the license found in the
|
5 |
# LICENSE file in the root directory of this source tree.
|
6 |
|
7 |
+
# Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
|
8 |
+
# also released under the MIT license.
|
9 |
+
|
10 |
import argparse
|
11 |
from concurrent.futures import ProcessPoolExecutor
|
12 |
import os
|
|
|
25 |
|
26 |
MODEL = None # Last used model
|
27 |
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
|
28 |
+
MAX_BATCH_SIZE = 8
|
29 |
BATCHED_DURATION = 15
|
30 |
+
INTERRUPTING = False
|
31 |
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
|
32 |
_old_call = sp.call
|
33 |
|
|
|
41 |
|
42 |
sp.call = _call_nostderr
|
43 |
# Preallocating the pool of processes.
|
44 |
+
pool = ProcessPoolExecutor(4)
|
45 |
pool.__enter__()
|
46 |
|
47 |
|
48 |
+
def interrupt():
|
49 |
+
global INTERRUPTING
|
50 |
+
INTERRUPTING = True
|
51 |
+
|
52 |
def make_waveform(*args, **kwargs):
|
53 |
# Further remove some warnings.
|
54 |
be = time.time()
|
|
|
67 |
|
68 |
|
69 |
def _do_predictions(texts, melodies, duration, **gen_kwargs):
|
|
|
|
|
|
|
70 |
MODEL.set_generation_params(duration=duration, **gen_kwargs)
|
71 |
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
|
72 |
be = time.time()
|
|
|
89 |
descriptions=texts,
|
90 |
melody_wavs=processed_melodies,
|
91 |
melody_sample_rate=target_sr,
|
92 |
+
progress=True
|
93 |
)
|
94 |
else:
|
95 |
+
outputs = MODEL.generate(texts, progress=True)
|
96 |
|
97 |
outputs = outputs.detach().cpu().float()
|
98 |
out_files = []
|
|
|
115 |
return [res]
|
116 |
|
117 |
|
118 |
+
def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
|
119 |
+
global INTERRUPTING
|
120 |
+
INTERRUPTING = False
|
121 |
topk = int(topk)
|
122 |
load_model(model)
|
123 |
+
def _progress(generated, to_generate):
|
124 |
+
progress((generated, to_generate))
|
125 |
+
if INTERRUPTING:
|
126 |
+
raise gr.Error("Interrupted.")
|
127 |
+
MODEL.set_custom_progress_callback(_progress)
|
128 |
|
129 |
outs = _do_predictions(
|
130 |
[text], [melody], duration,
|
|
|
148 |
melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
|
149 |
with gr.Row():
|
150 |
submit = gr.Button("Submit")
|
151 |
+
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
|
152 |
+
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
|
153 |
with gr.Row():
|
154 |
model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
|
155 |
with gr.Row():
|
|
|
204 |
This can take a long time, and the model might lose consistency. The model might also
|
205 |
decide at arbitrary positions that the song ends.
|
206 |
|
207 |
+
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). An overlap of 12 seconds
|
208 |
+
is kept with the previously generated chunk, and 18 "new" seconds are generated each time.
|
209 |
|
210 |
We present 4 model variations:
|
211 |
1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
|
|
|
222 |
"""
|
223 |
)
|
224 |
|
225 |
+
interface.queue().launch(**launch_kwargs)
|
226 |
|
227 |
|
228 |
def ui_batched(launch_kwargs):
|
audiocraft/models/musicgen.py
CHANGED
@@ -99,7 +99,7 @@ class MusicGen:
|
|
99 |
def set_generation_params(self, use_sampling: bool = True, top_k: int = 250,
|
100 |
top_p: float = 0.0, temperature: float = 1.0,
|
101 |
duration: float = 30.0, cfg_coef: float = 3.0,
|
102 |
-
two_step_cfg: bool = False, extend_stride: float =
|
103 |
"""Set the generation parameters for MusicGen.
|
104 |
|
105 |
Args:
|
@@ -129,6 +129,7 @@ class MusicGen:
|
|
129 |
}
|
130 |
|
131 |
def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None):
|
|
|
132 |
self._progress_callback = progress_callback
|
133 |
|
134 |
def generate_unconditional(self, num_samples: int, progress: bool = False) -> torch.Tensor:
|
@@ -280,9 +281,11 @@ class MusicGen:
|
|
280 |
def _progress_callback(generated_tokens: int, tokens_to_generate: int):
|
281 |
generated_tokens += current_gen_offset
|
282 |
if self._progress_callback is not None:
|
|
|
|
|
283 |
self._progress_callback(generated_tokens, total_gen_len)
|
284 |
else:
|
285 |
-
|
286 |
|
287 |
if prompt_tokens is not None:
|
288 |
assert max_prompt_len >= prompt_tokens.shape[-1], \
|
@@ -326,6 +329,7 @@ class MusicGen:
|
|
326 |
# we wouldn't have the full wav.
|
327 |
initial_position = int(time_offset * self.sample_rate)
|
328 |
wav_target_length = int(self.max_duration * self.sample_rate)
|
|
|
329 |
positions = torch.arange(initial_position,
|
330 |
initial_position + wav_target_length, device=self.device)
|
331 |
attr.wav['self_wav'] = WavCondition(
|
|
|
99 |
def set_generation_params(self, use_sampling: bool = True, top_k: int = 250,
|
100 |
top_p: float = 0.0, temperature: float = 1.0,
|
101 |
duration: float = 30.0, cfg_coef: float = 3.0,
|
102 |
+
two_step_cfg: bool = False, extend_stride: float = 18):
|
103 |
"""Set the generation parameters for MusicGen.
|
104 |
|
105 |
Args:
|
|
|
129 |
}
|
130 |
|
131 |
def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None):
|
132 |
+
"""Override the default progress callback."""
|
133 |
self._progress_callback = progress_callback
|
134 |
|
135 |
def generate_unconditional(self, num_samples: int, progress: bool = False) -> torch.Tensor:
|
|
|
281 |
def _progress_callback(generated_tokens: int, tokens_to_generate: int):
|
282 |
generated_tokens += current_gen_offset
|
283 |
if self._progress_callback is not None:
|
284 |
+
# Note that total_gen_len might be quite wrong depending on the
|
285 |
+
# codebook pattern used, but with delay it is almost accurate.
|
286 |
self._progress_callback(generated_tokens, total_gen_len)
|
287 |
else:
|
288 |
+
print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r')
|
289 |
|
290 |
if prompt_tokens is not None:
|
291 |
assert max_prompt_len >= prompt_tokens.shape[-1], \
|
|
|
329 |
# we wouldn't have the full wav.
|
330 |
initial_position = int(time_offset * self.sample_rate)
|
331 |
wav_target_length = int(self.max_duration * self.sample_rate)
|
332 |
+
print(initial_position / self.sample_rate, wav_target_length / self.sample_rate)
|
333 |
positions = torch.arange(initial_position,
|
334 |
initial_position + wav_target_length, device=self.device)
|
335 |
attr.wav['self_wav'] = WavCondition(
|