Spaces:
Sleeping
Sleeping
File size: 23,021 Bytes
13795d4 22dc2e3 cad0ba5 155ba3c cad0ba5 f2d70d3 cad0ba5 0698d2a 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 4fe58f8 332c659 8540618 df7b1e1 8540618 df7b1e1 8540618 7b7d862 df7b1e1 8540618 b8bcd53 8540618 4fe58f8 13795d4 332c659 8540618 4fe58f8 615f25c 4fe58f8 f2d70d3 4fe58f8 22dc2e3 0698d2a 22dc2e3 0698d2a 22dc2e3 48b107e 22dc2e3 72bb4e8 22dc2e3 72bb4e8 13795d4 4fe58f8 13795d4 332c659 8540618 e408fa1 8540618 4fe58f8 13795d4 4fe58f8 deb649d e05124c 13795d4 4fe58f8 13795d4 4fe58f8 13795d4 332c659 8540618 df7b1e1 8540618 13795d4 4fe58f8 332c659 8540618 332c659 8540618 e64920c df7b1e1 8540618 332c659 4fe58f8 df7b1e1 13795d4 332c659 df7b1e1 4fe58f8 8540618 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# author : OzlemAkgunoglu
# github : https://github.com/OzlemAkgunoglu
# Dynamic Photo Filter App
# This is a Dynamic Photo Filter App that allows you to apply various filters to your images.
# Adjust brightness, contrast, sharpening, and select a filter for real-time changes.
# And this app is created using OpenCV and Gradio. Thank you for using it.
# Let's load the necessary libraries
import cv2 as cv # OpenCV for image processing
import numpy as np # Numpy for arrays
import gradio as gr # Gradio for UI
import re
def rgba_to_rgb(rgba_string):
match = re.match(r'rgba\(([\d.]+),\s*([\d.]+),\s*([\d.]+),\s*([\d.]+)\)', rgba_string)
if not match:
raise ValueError("Invalid RGBA")
r, g, b, a = map(float, match.groups())
return (int(r), int(g), int(b))
# Let's define the filter functions
def apply_grayscale(image):
return cv.cvtColor(image, cv.COLOR_BGR2GRAY) # Convert the image to grayscale
# Sepia filter function
def apply_sepia(image):
sepia_filter = np.array([[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
sepia_image = cv.transform(image, sepia_filter) # Apply the filter
return np.clip(sepia_image, 0, 255).astype(np.uint8) # clip to hold values between 0 and 255 prevent excessive brightness or darkening.
def apply_negative(image):
return cv.bitwise_not(image) # Invert the image
# Sketch filter
def apply_sketch(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) # Convert the image to grayscale
inv = cv.bitwise_not(gray) # Invert the grayscale image
blurred = cv.GaussianBlur(inv, (21, 21), sigmaX=0, sigmaY=0)
sketch_image = cv.divide(gray, 255 - blurred, scale=256)
return sketch_image
def apply_sharpen(image, sharpening):
sharpening_filter = np.array([[0, -1, 0],
[-1, 5 + sharpening, -1],
[0, -1, 0]])
return cv.filter2D(image, -1, sharpening_filter) # Apply the filter each pixel is multiplied by the value in the kernel
def apply_edge_detection(image):
return cv.Canny(image, 100, 200)
def apply_fall_filter(frame):
fall_filter = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
return cv.transform(frame, fall_filter)
# Emboss filter
def apply_emboss(image):
emboss_filter = np.array([[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]])
return cv.filter2D(image, -1, emboss_filter)
# Blur filter
def apply_blur(image, kernel_size):
return cv.blur(image, (kernel_size, kernel_size))
# Vintage filter
def apply_vintage(image):
vintage_filter = np.array([[0.627, 0.554, 0.369],
[0.766, 0.714, 0.406],
[0.882, 0.869, 0.524]])
vintage_image = cv.transform(image, vintage_filter) # Apply the filter
return np.clip(vintage_image, 0, 255).astype(np.uint8) # clip to hold values between 0 and 255 prevent excessive brightness or darkening.
# Combined filter
def apply_combined(image, sharpening):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
sepia = apply_sepia(image)
sharpened = apply_sharpen(sepia, sharpening)
edges = apply_edge_detection(gray)
edges = cv.cvtColor(edges, cv.COLOR_GRAY2BGR)
combined = cv.addWeighted(sharpened, 0.7, edges, 0.3, 0)
return combined
# Cartoon filter
def apply_cartoon(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
gray = cv.medianBlur(gray, 7)
edges = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 9, 9)
color = cv.bilateralFilter(image, 9, 300, 300)
cartoon = cv.bitwise_and(color, color, mask=edges)
return cartoon
# Watercolor filter
def apply_watercolor(image, size, sigma):
blurred = cv.GaussianBlur(image, (size, size), sigma)
watercolor = cv.addWeighted(image, 0.5, blurred, 0.5, 0)
return watercolor
# Hue Shift filter
def apply_hue_shift(image, hue_shift):
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
h, s, v = cv.split(hsv)
h = cv.add(h, hue_shift)
shifted_hsv = cv.merge([h, s, v])
shifted_image = cv.cvtColor(shifted_hsv, cv.COLOR_HSV2BGR)
return shifted_image
def apply_60s_tv(image):
# Convert to sepia
sepia = apply_sepia(image)
# Reduce sharpness
blurred = cv.GaussianBlur(sepia, (5, 5), sigmaX=0, sigmaY=0)
# Add noise
noise = np.zeros(sepia.shape, dtype=np.int16)
cv.randn(noise, 0, 20)
noisy_image = cv.add(blurred, noise, dtype=cv.CV_8UC3)
noisy_image = np.clip(noisy_image, 0, 255).astype(np.uint8)
# Reduce color depth
noisy_image = (noisy_image // 32) * 32
return noisy_image
# Vignette filter
def apply_vignette(image, strength, aspect_ratio, center_x, center_y, radius, smoothness):
rows, cols = image.shape[:2]
center = (int(cols * center_x), int(rows * center_y))
mask = np.zeros((rows, cols), dtype=np.float32)
for i in range(rows):
for j in range(cols):
distance_x = (j - center[0]) / (cols * aspect_ratio)
distance_y = (i - center[1]) / rows
distance = np.sqrt(distance_x**2 + distance_y**2)
mask[i, j] = 1 - (distance / radius) ** strength
mask = np.clip(mask, 0, 1)
mask = np.stack((mask, mask, mask), axis=2)
vignette_image = cv.multiply(image.astype(np.float32), mask)
return vignette_image.astype(np.uint8)
# Tint filter
def apply_tint(image, tint_color, intensity):
tint_color = np.array(tint_color, dtype=np.float32) / 255.0
tint_color = cv.cvtColor(np.uint8([[tint_color]]), cv.COLOR_BGR2HSV).flatten()
hsv_image = cv.cvtColor(image, cv.COLOR_BGR2HSV).astype(np.float32)
hsv_image[:, :, 0] = (hsv_image[:, :, 0] + tint_color[0] * intensity) % 180
hsv_image[:, :, 1] = np.clip(hsv_image[:, :, 1] + tint_color[1] * intensity, 0, 255)
hsv_image[:, :, 2] = np.clip(hsv_image[:, :, 2] + tint_color[2] * intensity, 0, 255)
tinted_image = cv.cvtColor(hsv_image.astype(np.uint8), cv.COLOR_HSV2BGR)
return tinted_image
# Dictionary to map filter names to functions
filter_functions = {
"Grayscale": apply_grayscale,
"Sepia": apply_sepia,
"Negative": apply_negative,
"Sketch": apply_sketch,
"Sharpen": apply_sharpen,
"Edge Detection": apply_edge_detection,
"Fall": apply_fall_filter,
"Emboss": apply_emboss,
"Blur": apply_blur,
"Vintage": apply_vintage,
"Combined": apply_combined,
"Cartoon": apply_cartoon,
"Watercolor": apply_watercolor,
"Hue Shift": apply_hue_shift,
"60s TV": apply_60s_tv,
"Vignette": apply_vignette,
"Tint": apply_tint
}
# Main function to apply selected filters
def apply_filters(image, filter_type, brightness, contrast, sharpening, kernel_size, hue_shift, size, sigma, vignette_strength, vignette_aspect_ratio, vignette_center_x, vignette_center_y, vignette_radius, vignette_smoothness, tint_color, tint_intensity):
if image is None:
gr.Error("Input image is empty!") # for debugging
return None # Return None if the input image is empty
# Adjust brightness and contrast
image = cv.convertScaleAbs(image, alpha=contrast, beta=brightness)
if isinstance(tint_color, str):
if tint_color.startswith('#') and len(tint_color) == 7:
try:
tint_color = tint_color.lstrip('#')
tint_color_rgb = tuple(int(tint_color[i:i+2], 16) for i in (0, 2, 4))
except ValueError:
print("Invalid hex color format. Using default color #FF0000.")
tint_color_rgb = (255, 0, 0) # Default color red
elif tint_color.startswith('rgba('):
try:
tint_color_rgb = rgba_to_rgb(tint_color)
except ValueError:
print("Invalid rgba format. Using default color #FF0000.", )
tint_color_rgb = (255, 0, 0) # Default color red
else:
print("Invalid color format. Using default color #FF0000.")
tint_color_rgb = (255, 0, 0) # Default color red
else:
print("Invalid color format. Using default color #FF0000.")
tint_color_rgb = (255, 0, 0) # Default color red
# Apply the selected filter from dictionary called filter_functions
if filter_type in filter_functions:
if filter_type == "Sharpen" or filter_type == "Combined":
image = filter_functions[filter_type](image, sharpening) # Calls the Sharpen or Combined filter with the sharpening parameter
elif filter_type == "Blur":
image = filter_functions[filter_type](image, kernel_size) # Calls the Blur filter with the kernel_size parameter
elif filter_type == "Hue Shift":
image = filter_functions[filter_type](image, hue_shift) # Calls the Hue Shift filter with hue_shift parameter
elif filter_type == "Watercolor":
image = filter_functions[filter_type](image, size, sigma) # Calls the Watercolor filter with size and sigma parameters
elif filter_type == "Vignette":
image = filter_functions[filter_type](image, vignette_strength, vignette_aspect_ratio, vignette_center_x, vignette_center_y, vignette_radius, vignette_smoothness) # Calls the Vignette filter with vignette_strength parameter
elif filter_type == "Tint":
image = filter_functions[filter_type](image, tint_color_rgb, tint_intensity)
else:
image = filter_functions[filter_type](image)
return image
# Define Interface
with gr.Blocks(theme="ParityError/Interstellar") as app:
# Title and Description
gr.Markdown("<h1 style='font-family: Arial, sans-serif; color: #333;'>📸 Photo Filter ⭐</h1>")
gr.Markdown("<p style='color: #666;'>Apply professional photo filters with adjustable brightness, contrast, and sharpness. Perfect your images instantly!</p>")
# Choices and Sliders at the Top
with gr.Row():
filter_choice = gr.Radio(list(filter_functions.keys()), label="Filter")
with gr.Column():
brightness_slider = gr.Slider(-100, 100, step=1, label="Brightness", value=0)
contrast_slider = gr.Slider(0.5, 3.0, step=0.1, label="Contrast", value=1.0)
sharpening_slider = gr.Slider(0, 5, step=0.1, label="Sharpening", value=0)
blur_slider = gr.Slider(3, 21, step=2, label="Blur Kernel Size", value=15, visible=False)
hue_shift_slider = gr.Slider(-180, 180, step=1, label="Hue Shift", value=0, visible=False)
watercolor_size_slider = gr.Slider(3, 21, step=2, label="Watercolor Size", value=15, visible=False)
watercolor_sigma_slider = gr.Slider(0.1, 10.0, step=0.1, label="Watercolor Sigma", value=2.0, visible=False)
vignette_strength_slider = gr.Slider(1, 10, step=0.1, label="Vignette Strength", value=3.0, visible=False)
vignette_aspect_ratio_slider = gr.Slider(0.5, 2.0, step=0.1, label="Vignette Aspect Ratio", value=1.0, visible=False)
vignette_center_x_slider = gr.Slider(0.0, 1.0, step=0.01, label="Vignette Center X", value=0.5, visible=False)
vignette_center_y_slider = gr.Slider(0.0, 1.0, step=0.01, label="Vignette Center Y", value=0.5, visible=False)
vignette_radius_slider = gr.Slider(0.1, 1.0, step=0.01, label="Vignette Radius", value=0.75, visible=False)
vignette_smoothness_slider = gr.Slider(1, 10, step=0.1, label="Vignette Smoothness", value=3.0, visible=False)
tint_color_picker = gr.ColorPicker(label="Tint Color", value="#FF0000", visible=False)
tint_intensity_slider = gr.Slider(0, 1, step=0.01, label="Tint Intensity", value=0.5, visible=False)
# Horizontal display of the images
with gr.Row():
image_input = gr.Image(label="Upload Image", type="numpy")
image_output = gr.Image(label="Filtered Image")
# Function to update visibility of sliders
def update_slider_visibility(filter_type):
blur_visible = filter_type == "Blur"
hue_visible = filter_type == "Hue Shift"
watercolor_visible = filter_type == "Watercolor"
vignette_visible = filter_type == "Vignette"
tint_visible = filter_type == "Tint"
return (
gr.update(visible=blur_visible),
gr.update(visible=hue_visible),
gr.update(visible=watercolor_visible),
gr.update(visible=watercolor_visible),
gr.update(visible=vignette_visible),
gr.update(visible=vignette_visible),
gr.update(visible=vignette_visible),
gr.update(visible=vignette_visible),
gr.update(visible=vignette_visible),
gr.update(visible=vignette_visible),
gr.update(visible=tint_visible),
gr.update(visible=tint_visible)
)
# Link events for real-time updates
image_input.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
filter_choice.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
brightness_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
contrast_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
sharpening_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
blur_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
hue_shift_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
watercolor_size_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
watercolor_sigma_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
vignette_strength_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
vignette_aspect_ratio_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
vignette_center_x_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
vignette_center_y_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
vignette_radius_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
vignette_smoothness_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
tint_color_picker.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
tint_intensity_slider.change(
apply_filters,
inputs=[
image_input, filter_choice, brightness_slider, contrast_slider, sharpening_slider,
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
],
outputs=image_output
)
# Update visibility of sliders when filter_choice changes
filter_choice.change(
update_slider_visibility,
inputs=[filter_choice],
outputs=[
blur_slider, hue_shift_slider, watercolor_size_slider, watercolor_sigma_slider,
vignette_strength_slider, vignette_aspect_ratio_slider, vignette_center_x_slider,
vignette_center_y_slider, vignette_radius_slider, vignette_smoothness_slider,
tint_color_picker, tint_intensity_slider
]
)
app.launch() |