Spaces:
Sleeping
Sleeping
File size: 8,617 Bytes
2cfb891 290c238 d1c1a86 2cfb891 d1c1a86 5cfebb1 d1c1a86 2cfb891 8fa75cc d1c1a86 290c238 216fbaf 2cfb891 216fbaf 290c238 d1c1a86 2cfb891 d1c1a86 2cfb891 d1c1a86 290c238 d1c1a86 2cfb891 d1c1a86 290c238 d1c1a86 290c238 5cfebb1 290c238 d1c1a86 2cfb891 290c238 2cfb891 290c238 2cfb891 290c238 d1c1a86 216fbaf 290c238 d1c1a86 216fbaf d1c1a86 2cfb891 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import json
import os
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
from open_clip import create_model, get_tokenizer
from torchvision import transforms
import lib
from templates import openai_imagenet_template
hf_token = os.getenv("HF_TOKEN")
model_str = "hf-hub:imageomics/bioclip"
tokenizer_str = "ViT-B-16"
name_lookup_json = "name_lookup.json"
txt_emb_npy = "txt_emb.npy"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
preprocess_img = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize((224, 224), antialias=True),
transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
]
)
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
open_domain_examples = [
["examples/Ursus-arctos.jpeg", "Species"],
["examples/Phoca-vitulina.png", "Species"],
["examples/Felis-catus.jpeg", "Genus"],
]
zero_shot_examples = [
[
"examples/Carnegiea-gigantea.png",
"Carnegiea gigantea\nSchlumbergera opuntioides\nMammillaria albicoma",
],
[
"examples/Amanita-muscaria.jpeg",
"Amanita fulva\nAmanita vaginata (grisette)\nAmanita calyptrata (coccoli)\nAmanita crocea\nAmanita rubescens (blusher)\nAmanita caesarea (Caesar's mushroom)\nAmanita jacksonii (American Caesar's mushroom)\nAmanita muscaria (fly agaric)\nAmanita pantherina (panther cap)",
],
[
"examples/Actinostola-abyssorum.png",
"Animalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola abyssorum\nAnimalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola bulbosa\nAnimalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola callosa\nAnimalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola capensis\nAnimalia Cnidaria Hexacorallia Actiniaria Actinostolidae Actinostola carlgreni",
],
]
@torch.no_grad()
def get_txt_features(classnames, templates):
all_features = []
for classname in classnames:
txts = [template(classname) for template in templates]
txts = tokenizer(txts).to(device)
txt_features = model.encode_text(txts)
txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
txt_features /= txt_features.norm()
all_features.append(txt_features)
all_features = torch.stack(all_features, dim=1)
return all_features
@torch.no_grad()
def zero_shot_classification(img, cls_str: str) -> dict[str, float]:
classes = [cls.strip() for cls in cls_str.split("\n") if cls.strip()]
txt_features = get_txt_features(classes, openai_imagenet_template)
img = preprocess_img(img).to(device)
img_features = model.encode_image(img.unsqueeze(0))
img_features = F.normalize(img_features, dim=-1)
logits = (model.logit_scale.exp() * img_features @ txt_features).squeeze()
probs = F.softmax(logits, dim=0).to("cpu").tolist()
return {cls: prob for cls, prob in zip(classes, probs)}
@torch.no_grad()
def open_domain_classification(img, rank: int) -> list[dict[str, float]]:
"""
Predicts from the top of the tree of life down to the species.
"""
img = preprocess_img(img).to(device)
img_features = model.encode_image(img.unsqueeze(0))
img_features = F.normalize(img_features, dim=-1)
outputs = []
name = []
for _ in range(rank + 1):
children = tuple(zip(*name_lookup.children(name)))
if not children:
break
values, indices = children
txt_features = txt_emb[:, indices].to(device)
logits = (model.logit_scale.exp() * img_features @ txt_features).view(-1)
probs = F.softmax(logits, dim=0).to("cpu").tolist()
parent = " ".join(name)
outputs.append(
{f"{parent} {value}": prob for value, prob in zip(values, probs)}
)
top = values[logits.argmax()]
name.append(top)
while len(outputs) < 7:
outputs.append({})
return list(reversed(outputs))
def change_output(choice):
return [
gr.Label(
num_top_classes=5, label=rank, show_label=True, visible=(6 - i <= choice)
)
for i, rank in enumerate(reversed(ranks))
]
def get_name_lookup(path):
with open(path) as fd:
return lib.TaxonomicTree.from_dict(json.load(fd))
if __name__ == "__main__":
print("Starting.")
model = create_model(model_str, output_dict=True, require_pretrained=True)
model = model.to(device)
print("Created model.")
model = torch.compile(model)
print("Compiled model.")
tokenizer = get_tokenizer(tokenizer_str)
name_lookup = get_name_lookup(name_lookup_json)
txt_emb = torch.from_numpy(np.load(txt_emb_npy, mmap_mode="r"))
done = txt_emb.any(axis=0).sum().item()
total = txt_emb.shape[1]
status_msg = ""
if done != total:
status_msg = f"{done}/{total} ({done / total * 100:.1f}%) indexed"
with gr.Blocks() as app:
img_input = gr.Image()
with gr.Tab("Open-Ended"):
with gr.Row():
with gr.Column():
rank_dropdown = gr.Dropdown(
label="Taxonomic Rank",
info="Which taxonomic rank to predict. Fine-grained ranks (genus, species) are more challenging.",
choices=ranks,
value="Species",
type="index",
)
open_domain_btn = gr.Button("Submit", variant="primary")
gr.Examples(
examples=open_domain_examples,
inputs=[img_input, rank_dropdown],
)
with gr.Column():
open_domain_outputs = [
gr.Label(num_top_classes=5, label=rank, show_label=True)
for rank in reversed(ranks)
]
open_domain_flag_btn = gr.Button("Flag Mistake", variant="primary")
open_domain_callback = gr.HuggingFaceDatasetSaver(
hf_token, "imageomics/bioclip-demo-open-domain-mistakes", private=True
)
open_domain_callback.setup(
[img_input, *open_domain_outputs], flagging_dir="logs/flagged"
)
open_domain_flag_btn.click(
lambda *args: open_domain_callback.flag(args),
[img_input, *open_domain_outputs],
None,
preprocess=False,
)
with gr.Tab("Zero-Shot"):
with gr.Row():
with gr.Column():
classes_txt = gr.Textbox(
placeholder="Canis familiaris (dog)\nFelis catus (cat)\n...",
lines=3,
label="Classes",
show_label=True,
info="Use taxonomic names where possible; include common names if possible.",
)
zero_shot_btn = gr.Button("Submit", variant="primary")
gr.Examples(
examples=zero_shot_examples,
inputs=[img_input, classes_txt],
)
with gr.Column():
zero_shot_output = gr.Label(
num_top_classes=5, label="Prediction", show_label=True
)
zero_shot_flag_btn = gr.Button("Flag Mistake", variant="primary")
zero_shot_callback = gr.HuggingFaceDatasetSaver(
hf_token, "imageomics/bioclip-demo-zero-shot-mistakes", private=True
)
zero_shot_callback.setup(
[img_input, zero_shot_output], flagging_dir="logs/flagged"
)
zero_shot_flag_btn.click(
lambda *args: zero_shot_callback.flag(args),
[img_input, zero_shot_output],
None,
preprocess=False,
)
rank_dropdown.change(
fn=change_output, inputs=rank_dropdown, outputs=open_domain_outputs
)
open_domain_btn.click(
fn=open_domain_classification,
inputs=[img_input, rank_dropdown],
outputs=open_domain_outputs,
)
zero_shot_btn.click(
fn=zero_shot_classification,
inputs=[img_input, classes_txt],
outputs=zero_shot_output,
)
app.queue(max_size=20)
app.launch()
|