File size: 6,776 Bytes
c25e2cc
3cdacdf
 
 
 
 
6255790
 
5e25b83
6255790
c25e2cc
6255790
 
 
 
 
 
 
 
 
 
 
 
 
e79152d
 
6255790
 
 
 
 
 
 
 
 
 
 
 
 
e79152d
 
6255790
 
 
 
 
5e25b83
 
 
9b96547
f55706c
27e096e
6255790
7078734
 
05f89f0
 
 
277aca5
05f89f0
 
 
 
 
 
6255790
9b96547
6255790
 
 
277aca5
 
6255790
 
 
 
3489b04
 
6255790
7078734
5e25b83
3489b04
 
 
 
5e25b83
 
 
 
39191c5
1a248f3
3489b04
5e25b83
7078734
6255790
 
67eedaf
db50056
ffe201d
 
3489b04
 
1ff3548
 
3489b04
 
 
7bb8383
 
 
77d316c
 
 
f948a49
d58e1aa
 
77d316c
 
 
 
7bb8383
 
ffe201d
7bb8383
 
 
 
77d316c
fdf34ba
7bb8383
 
 
67eedaf
7bb8383
7809f39
 
ffe201d
 
 
277aca5
ffe201d
 
 
 
 
 
 
 
 
 
7bb8383
fdf34ba
7bb8383
 
7078734
7bb8383
1df825b
 
 
 
 
 
 
 
 
 
277aca5
da366cb
277aca5
 
3489b04
 
b30a076
 
3489b04
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
import torch
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode

def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):

  #  inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf, 
  #  based on the code in https://github.com/inbarhub/DDPM_inversion
   
  #  returns wt, zs, wts:
  #  wt - inverted latent
  #  wts - intermediate inverted latents
  #  zs - noise maps

  sd_pipe.scheduler.set_timesteps(num_diffusion_steps)

  # vae encode image
  with autocast("cuda"), inference_mode():
      w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()

  # find Zs and wts - forward process
  wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
  return wt, zs, wts



def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):

    # reverse process (via Zs and wT)
    w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
    
    # vae decode image
    with autocast("cuda"), inference_mode():
        x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
    if x0_dec.dim()<4:
        x0_dec = x0_dec[None,:,:,:]
    img = image_grid(x0_dec)
    return img

# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)


def edit(input_image, 
                    src_prompt ="", 
                    tar_prompt="", 
                    steps=100,
                    # src_cfg_scale,
                    skip=36,
                    tar_cfg_scale=15,
                    edit_concept="",
                    sega_edit_guidance=0,
                    warm_up=7,
                    neg_guidance=False):
    offsets=(0,0,0,0)
    x0 = load_512(input_image, *offsets, device)


    # invert
    # wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
    wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps)                    
    latnets = wts[skip].expand(1, -1, -1, -1)

    eta = 1 
    #pure DDPM output
    pure_ddpm_out = sample(wt, zs, wts, prompt_tar=tar_prompt, 
                           cfg_scale_tar=tar_cfg_scale, skip=skip, 
                           eta = eta)
    
    editing_args = dict(
    editing_prompt = [edit_concept],
    reverse_editing_direction = [neg_guidance],
    edit_warmup_steps=[warm_up],
    edit_guidance_scale=[sega_edit_guidance], 
    edit_threshold=[.93],
    edit_momentum_scale=0.5, 
    edit_mom_beta=0.6 
  )
    sega_out = sem_pipe(prompt=tar_prompt,eta=eta, latents=latnets, guidance_scale = tar_cfg_scale,
                        num_images_per_prompt=1,  
                        num_inference_steps=steps, 
                        use_ddpm=True,  wts=wts, zs=zs[skip:], **editing_args)
    return pure_ddpm_out,sega_out.images[0]


# demo
intro = """
# <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 1200; text-align: center; margin-bottom: 7px;">
   Edit Friendly DDPM X Semantic Guidance: Editing Real Images
</h1>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks() as demo:
    gr.HTML(intro)
   

    with gr.Row():
        input_image = gr.Image(label="Input Image", interactive=True)
        ddpm_edited_image = gr.Image(label=f"DDPM Reconstructed Image", interactive=False)
        sega_edited_image = gr.Image(label=f"DDPM + SEGA Edited Image", interactive=False)
        input_image.style(height=512, width=512)
        ddpm_edited_image.style(height=512, width=512)
        sega_edited_image.style(height=512, width=512)

    with gr.Row():
        with gr.Column(scale=1, min_width=100):
            generate_button = gr.Button("Run")
        # with gr.Column(scale=1, min_width=100):
        #     reset_button = gr.Button("Reset")
        # with gr.Column(scale=3):
        #     instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
            
    with gr.Row():
        src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True)
        #edit
        tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True)
        edit_concept = gr.Textbox(lines=1, label="SEGA Edit Concept", interactive=True)

    # with gr.Row():
    with gr.Accordion("Advanced Options"):
         with gr.Column(scale=1, min_width=100):
            #inversion
            steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
        # src_cfg_scale = gr.Number(value=3.5, label=f"Source CFG", interactive=True)
        with gr.Column(scale=1, min_width=100):
            # reconstruction
            skip = gr.Number(value=36, precision=0, label="Skip Steps", interactive=True)
            tar_cfg_scale = gr.Number(value=15, label=f"Guidance Scale", interactive=True)
        with gr.Column(scale=1, min_width=100):
            # edit
            sega_edit_guidance = gr.Number(value=5, label=f"SEGA Edit Guidance Scale", interactive=True)
            warm_up = gr.Number(value=5, label=f"SEGA Warm-up Steps", interactive=True)
            neg_guidance = gr.Checkbox(label="SEGA Negative Guidance")
      

    # gr.Markdown(help_text)

    generate_button.click(
        fn=edit,
        inputs=[input_image, 
                    src_prompt, 
                    tar_prompt, 
                    steps,
                    # src_cfg_scale,
                    skip,
                    tar_cfg_scale,
                    edit_concept,
                    sega_edit_guidance,
                    warm_up,
                    neg_guidance   
        ],
        outputs=[ddpm_edited_image, sega_edited_image],
    )



demo.queue(concurrency_count=1)
demo.launch(share=False)