Spaces:
Running
on
A10G
Running
on
A10G
Linoy Tsaban
commited on
Commit
·
7078734
1
Parent(s):
bf289f4
Update app.py
Browse files
app.py
CHANGED
@@ -50,15 +50,19 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
50 |
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
51 |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
52 |
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
53 |
-
latents, wts, zs = None, None, None
|
54 |
|
55 |
-
|
|
|
56 |
src_prompt,
|
57 |
tar_prompt,
|
58 |
steps,
|
59 |
# src_cfg_scale,
|
60 |
skip,
|
61 |
-
tar_cfg_scale
|
|
|
|
|
|
|
|
|
62 |
offsets=(0,0,0,0)
|
63 |
x0 = load_512(input_image, *offsets, device)
|
64 |
|
@@ -73,16 +77,7 @@ def invert_and_reconstruct(input_image,
|
|
73 |
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=tar_prompt,
|
74 |
cfg_scale_tar=tar_cfg_scale, skip=skip,
|
75 |
eta = eta)
|
76 |
-
|
77 |
-
|
78 |
-
def edit( input_image,
|
79 |
-
tar_prompt,
|
80 |
-
steps,
|
81 |
-
edit_concept,
|
82 |
-
sega_edit_guidance,
|
83 |
-
warm_up,
|
84 |
-
neg_guidance):
|
85 |
-
|
86 |
editing_args = dict(
|
87 |
editing_prompt = [edit_concept],
|
88 |
reverse_editing_direction = [neg_guidance],
|
@@ -96,48 +91,7 @@ def edit( input_image,
|
|
96 |
num_images_per_prompt=1,
|
97 |
num_inference_steps=steps,
|
98 |
use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args)
|
99 |
-
return sega_out.images[0]
|
100 |
-
|
101 |
-
# def edit(input_image,
|
102 |
-
# src_prompt,
|
103 |
-
# tar_prompt,
|
104 |
-
# steps,
|
105 |
-
# # src_cfg_scale,
|
106 |
-
# skip,
|
107 |
-
# tar_cfg_scale,
|
108 |
-
# edit_concept,
|
109 |
-
# sega_edit_guidance,
|
110 |
-
# warm_up,
|
111 |
-
# neg_guidance):
|
112 |
-
# offsets=(0,0,0,0)
|
113 |
-
# x0 = load_512(input_image, *offsets, device)
|
114 |
-
|
115 |
-
|
116 |
-
# # invert
|
117 |
-
# # wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
|
118 |
-
# wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps)
|
119 |
-
# latnets = wts[skip].expand(1, -1, -1, -1)
|
120 |
-
|
121 |
-
# eta = 1
|
122 |
-
# #pure DDPM output
|
123 |
-
# pure_ddpm_out = sample(wt, zs, wts, prompt_tar=tar_prompt,
|
124 |
-
# cfg_scale_tar=tar_cfg_scale, skip=skip,
|
125 |
-
# eta = eta)
|
126 |
-
|
127 |
-
# editing_args = dict(
|
128 |
-
# editing_prompt = [edit_concept],
|
129 |
-
# reverse_editing_direction = [neg_guidance],
|
130 |
-
# edit_warmup_steps=[warm_up],
|
131 |
-
# edit_guidance_scale=[sega_edit_guidance],
|
132 |
-
# edit_threshold=[.93],
|
133 |
-
# edit_momentum_scale=0.5,
|
134 |
-
# edit_mom_beta=0.6
|
135 |
-
# )
|
136 |
-
# sega_out = sem_pipe(prompt=tar_prompt,eta=eta, latents=latnets,
|
137 |
-
# num_images_per_prompt=1,
|
138 |
-
# num_inference_steps=steps,
|
139 |
-
# use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args)
|
140 |
-
# return pure_ddpm_out,sega_out.images[0]
|
141 |
|
142 |
|
143 |
####################################
|
@@ -163,9 +117,7 @@ with gr.Blocks() as demo:
|
|
163 |
|
164 |
with gr.Row():
|
165 |
with gr.Column(scale=1, min_width=100):
|
166 |
-
generate_button = gr.Button("
|
167 |
-
with gr.Column(scale=1, min_width=100):
|
168 |
-
edit_button = gr.Button("Edit")
|
169 |
# with gr.Column(scale=1, min_width=100):
|
170 |
# reset_button = gr.Button("Reset")
|
171 |
# with gr.Column(scale=3):
|
@@ -193,7 +145,7 @@ with gr.Blocks() as demo:
|
|
193 |
# gr.Markdown(help_text)
|
194 |
|
195 |
generate_button.click(
|
196 |
-
fn=
|
197 |
inputs=[input_image,
|
198 |
src_prompt,
|
199 |
tar_prompt,
|
@@ -205,19 +157,6 @@ with gr.Blocks() as demo:
|
|
205 |
outputs=[ddpm_edited_image],
|
206 |
)
|
207 |
|
208 |
-
edit_button.click(
|
209 |
-
fn=edit,
|
210 |
-
inputs=[
|
211 |
-
input_image,
|
212 |
-
tar_prompt,
|
213 |
-
steps,
|
214 |
-
edit_concept,
|
215 |
-
sega_edit_guidance,
|
216 |
-
warm_up,
|
217 |
-
neg_guidance
|
218 |
-
],
|
219 |
-
outputs=[sega_edited_image],
|
220 |
-
)
|
221 |
|
222 |
|
223 |
demo.queue(concurrency_count=1)
|
|
|
50 |
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
51 |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
52 |
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
|
|
53 |
|
54 |
+
|
55 |
+
def edit(input_image,
|
56 |
src_prompt,
|
57 |
tar_prompt,
|
58 |
steps,
|
59 |
# src_cfg_scale,
|
60 |
skip,
|
61 |
+
tar_cfg_scale,
|
62 |
+
edit_concept,
|
63 |
+
sega_edit_guidance,
|
64 |
+
warm_up,
|
65 |
+
neg_guidance):
|
66 |
offsets=(0,0,0,0)
|
67 |
x0 = load_512(input_image, *offsets, device)
|
68 |
|
|
|
77 |
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=tar_prompt,
|
78 |
cfg_scale_tar=tar_cfg_scale, skip=skip,
|
79 |
eta = eta)
|
80 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
editing_args = dict(
|
82 |
editing_prompt = [edit_concept],
|
83 |
reverse_editing_direction = [neg_guidance],
|
|
|
91 |
num_images_per_prompt=1,
|
92 |
num_inference_steps=steps,
|
93 |
use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args)
|
94 |
+
return pure_ddpm_out,sega_out.images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
|
97 |
####################################
|
|
|
117 |
|
118 |
with gr.Row():
|
119 |
with gr.Column(scale=1, min_width=100):
|
120 |
+
generate_button = gr.Button("Generate")
|
|
|
|
|
121 |
# with gr.Column(scale=1, min_width=100):
|
122 |
# reset_button = gr.Button("Reset")
|
123 |
# with gr.Column(scale=3):
|
|
|
145 |
# gr.Markdown(help_text)
|
146 |
|
147 |
generate_button.click(
|
148 |
+
fn=edit,
|
149 |
inputs=[input_image,
|
150 |
src_prompt,
|
151 |
tar_prompt,
|
|
|
157 |
outputs=[ddpm_edited_image],
|
158 |
)
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
|
162 |
demo.queue(concurrency_count=1)
|