File size: 7,029 Bytes
893ed02
 
 
 
6e8dad4
 
c069834
2d31353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a0a03
2d31353
 
95a0a03
 
2d31353
95a0a03
2d31353
 
 
 
 
 
 
95a0a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e8dad4
2d31353
 
95a0a03
6e8dad4
 
2d31353
 
 
95a0a03
8f89163
2d31353
 
 
95a0a03
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import streamlit as st
import pandas as pd
import numpy as np

# Seed for reproducibility
np.random.seed(42)

# Function to generate synthetic BreastCancer data
def generate_breast_cancer_data(num_patients):
    primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)]
    
    ages = []
    menopausal_status = []
    tumor_sizes = []
    lymph_nodes = []
    grades = []
    stages = []
    er_status = []
    pr_status = []
    her2_status = []
    ki67_level = []
    tnbc_status = []
    brca_mutation = []
    overall_health = []
    genomic_score = []
    treatment = []

    for i in range(num_patients):
        age = int(np.random.normal(60, 10))
        age = max(30, min(age, 80))
        ages.append(age)

        menopausal = "Post-menopausal" if age >= 50 else "Pre-menopausal"
        menopausal_status.append(menopausal)

        tumor_size = round(np.random.lognormal(mean=0.7, sigma=0.5), 2)
        tumor_sizes.append(tumor_size)

        lymph_node = (
            "Positive"
            if (tumor_size > 2.0 and np.random.rand() < 0.6)
            or (tumor_size <= 2.0 and np.random.rand() < 0.3)
            else "Negative"
        )
        lymph_nodes.append(lymph_node)

        grade = np.random.choice([1, 2, 3], p=[0.1, 0.4, 0.5] if tumor_size > 2.0 else [0.3, 0.5, 0.2])
        grades.append(grade)

        if tumor_size <= 2.0 and lymph_node == "Negative":
            stage = "I"
        elif (tumor_size > 2.0 and tumor_size <= 5.0) and lymph_node == "Negative":
            stage = "II"
        elif lymph_node == "Positive" or tumor_size > 5.0:
            stage = "III"
        else:
            stage = "II"
        if np.random.rand() < 0.05:
            stage = "IV"
        stages.append(stage)

        er = np.random.choice(["Positive", "Negative"], p=[0.75, 0.25])
        pr = "Positive" if er == "Positive" and np.random.rand() > 0.1 else "Negative"
        er_status.append(er)
        pr_status.append(pr)

        her2 = np.random.choice(["Positive", "Negative"], p=[0.3, 0.7] if grade == 3 else [0.15, 0.85])
        her2_status.append(her2)

        ki67 = "High" if grade == 3 and np.random.rand() < 0.8 else "Low"
        ki67_level.append(ki67)

        tnbc = "Positive" if er == "Negative" and pr == "Negative" and her2 == "Negative" else "Negative"
        tnbc_status.append(tnbc)

        brca = "Positive" if (tnbc == "Positive" or age < 40) and np.random.rand() < 0.2 else "Negative"
        brca_mutation.append(brca)

        health = "Good" if age < 65 and np.random.rand() < 0.9 else "Poor"
        overall_health.append(health)

        recurrence_score = (
            np.random.choice(["Low", "Intermediate", "High"], p=[0.6, 0.3, 0.1])
            if er == "Positive" and her2 == "Negative"
            else "N/A"
        )
        genomic_score.append(recurrence_score)

        if stage in ["I", "II"]:
            if tnbc == "Positive":
                treat = "Surgery, Chemotherapy, and Radiation Therapy"
            elif er == "Positive" and recurrence_score != "N/A":
                if recurrence_score == "High":
                    treat = "Surgery, Chemotherapy, Hormone Therapy, and Radiation Therapy"
                elif recurrence_score == "Intermediate":
                    treat = "Surgery, Consider Chemotherapy, Hormone Therapy, and Radiation Therapy"
                else:
                    treat = "Surgery, Hormone Therapy, and Radiation Therapy"
            elif her2 == "Positive":
                treat = "Surgery, HER2-Targeted Therapy, Chemotherapy, and Radiation Therapy"
            else:
                treat = "Surgery, Chemotherapy, and Radiation Therapy"
        elif stage == "III":
            treat = (
                "Neoadjuvant Chemotherapy, Surgery, Radiation Therapy"
                + (", HER2-Targeted Therapy" if her2 == "Positive" else "")
                + (", Hormone Therapy" if er == "Positive" else "")
            )
        else:
            treat = "Systemic Therapy (Palliative Care)"
        treatment.append(treat)

    breast_cancer_data = {
        "Patient ID": primary_keys,
        "Age": ages,
        "Menopausal Status": menopausal_status,
        "Tumor Size (cm)": tumor_sizes,
        "Lymph Node Involvement": lymph_nodes,
        "Tumor Grade": grades,
        "Tumor Stage": stages,
        "ER Status": er_status,
        "PR Status": pr_status,
        "HER2 Status": her2_status,
        "Ki-67 Level": ki67_level,
        "TNBC Status": tnbc_status,
        "BRCA Mutation": brca_mutation,
        "Overall Health": overall_health,
        "Genomic Recurrence Score": genomic_score,
        "Treatment": treatment,
    }

    return pd.DataFrame(breast_cancer_data)

# Function to generate synthetic Members
def generate_members_from_breast_cancer(breast_cancer_df):
    members_data = {
        "MEMBER_ID": breast_cancer_df["Patient ID"],
        "PRIMARY_PERSON_KEY": breast_cancer_df["Patient ID"],
        "MEM_GENDER": ["F"] * len(breast_cancer_df),
        "MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], len(breast_cancer_df)),
        "MEM_RACE": np.random.choice(["White", "Black", "Asian", None], len(breast_cancer_df)),
        "MEM_STATE": np.random.choice(["MI", "HI", "CA"], len(breast_cancer_df)),
        "MEM_ZIP3": np.random.randint(100, 999, len(breast_cancer_df)),
    }
    return pd.DataFrame(members_data)

# Function to generate synthetic Services
def generate_services(num_services, primary_keys):
    services_data = {
        "PRIMARY_PERSON_KEY": np.random.choice(primary_keys, num_services),
        "Sum of AMT_ALLOWED": np.random.uniform(1000, 10000, num_services),
        "Sum of AMT_BILLED": np.random.uniform(1000, 15000, num_services),
        "Count of AMT_PAID": np.random.randint(1, 5, num_services),
        "SERVICE_SETTING": np.random.choice(["OUTPATIENT", "INPATIENT"], num_services),
    }
    return pd.DataFrame(services_data)

# Main Streamlit App
st.title("Synthetic Medical Data Generator")

# Slider for breast cancer patients
num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 1000, 100)
num_services = st.slider("Number of Services to Generate", 10, 2000, 500)

if st.button("Generate Data"):
    breast_cancer_df = generate_breast_cancer_data(num_patients)
    members_df = generate_members_from_breast_cancer(breast_cancer_df)
    services_df = generate_services(num_services, breast_cancer_df["Patient ID"].tolist())

    # Display and download data
    st.subheader("Breast Cancer Data")
    st.dataframe(breast_cancer_df.head())
    st.download_button("Download Breast Cancer Data", breast_cancer_df.to_csv(index=False), "breast_cancer.csv")

    st.subheader("Members Data")
    st.dataframe(members_df.head())
    st.download_button("Download Members", members_df.to_csv(index=False), "members.csv")

    st.subheader("Services Data")
    st.dataframe(services_df.head())
    st.download_button("Download Services", services_df.to_csv(index=False), "services.csv")