Spaces:
Sleeping
Sleeping
eaglelandsonce
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,142 +5,126 @@ import numpy as np
|
|
5 |
# Seed for reproducibility
|
6 |
np.random.seed(42)
|
7 |
|
8 |
-
# Function to generate synthetic
|
9 |
-
def
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
age = max(30, min(age, 80))
|
30 |
-
ages.append(age)
|
31 |
-
|
32 |
-
menopausal = "Post-menopausal" if age >= 50 else "Pre-menopausal"
|
33 |
-
menopausal_status.append(menopausal)
|
34 |
-
|
35 |
-
tumor_size = round(np.random.lognormal(mean=0.7, sigma=0.5), 2)
|
36 |
-
tumor_sizes.append(tumor_size)
|
37 |
-
|
38 |
-
lymph_node = (
|
39 |
-
"Positive"
|
40 |
-
if (tumor_size > 2.0 and np.random.rand() < 0.6)
|
41 |
-
or (tumor_size <= 2.0 and np.random.rand() < 0.3)
|
42 |
-
else "Negative"
|
43 |
-
)
|
44 |
-
lymph_nodes.append(lymph_node)
|
45 |
-
|
46 |
-
grade = np.random.choice([1, 2, 3], p=[0.1, 0.4, 0.5] if tumor_size > 2.0 else [0.3, 0.5, 0.2])
|
47 |
-
grades.append(grade)
|
48 |
-
|
49 |
-
if tumor_size <= 2.0 and lymph_node == "Negative":
|
50 |
-
stage = "I"
|
51 |
-
elif (tumor_size > 2.0 and tumor_size <= 5.0) and lymph_node == "Negative":
|
52 |
-
stage = "II"
|
53 |
-
elif lymph_node == "Positive" or tumor_size > 5.0:
|
54 |
-
stage = "III"
|
55 |
-
else:
|
56 |
-
stage = "II"
|
57 |
-
if np.random.rand() < 0.05:
|
58 |
-
stage = "IV"
|
59 |
-
stages.append(stage)
|
60 |
-
|
61 |
-
er = np.random.choice(["Positive", "Negative"], p=[0.75, 0.25])
|
62 |
-
pr = "Positive" if er == "Positive" and np.random.rand() > 0.1 else "Negative"
|
63 |
-
er_status.append(er)
|
64 |
-
pr_status.append(pr)
|
65 |
-
|
66 |
-
her2 = np.random.choice(["Positive", "Negative"], p=[0.3, 0.7] if grade == 3 else [0.15, 0.85])
|
67 |
-
her2_status.append(her2)
|
68 |
-
|
69 |
-
ki67 = "High" if grade == 3 and np.random.rand() < 0.8 else "Low"
|
70 |
-
ki67_level.append(ki67)
|
71 |
-
|
72 |
-
tnbc = "Positive" if er == "Negative" and pr == "Negative" and her2 == "Negative" else "Negative"
|
73 |
-
tnbc_status.append(tnbc)
|
74 |
-
|
75 |
-
brca = "Positive" if (tnbc == "Positive" or age < 40) and np.random.rand() < 0.2 else "Negative"
|
76 |
-
brca_mutation.append(brca)
|
77 |
-
|
78 |
-
health = "Good" if age < 65 and np.random.rand() < 0.9 else "Poor"
|
79 |
-
overall_health.append(health)
|
80 |
-
|
81 |
-
recurrence_score = (
|
82 |
-
np.random.choice(["Low", "Intermediate", "High"], p=[0.6, 0.3, 0.1])
|
83 |
-
if er == "Positive" and her2 == "Negative"
|
84 |
-
else "N/A"
|
85 |
-
)
|
86 |
-
genomic_score.append(recurrence_score)
|
87 |
-
|
88 |
-
if stage in ["I", "II"]:
|
89 |
-
if tnbc == "Positive":
|
90 |
-
treat = "Surgery, Chemotherapy, and Radiation Therapy"
|
91 |
-
elif er == "Positive" and recurrence_score != "N/A":
|
92 |
-
if recurrence_score == "High":
|
93 |
-
treat = "Surgery, Chemotherapy, Hormone Therapy, and Radiation Therapy"
|
94 |
-
elif recurrence_score == "Intermediate":
|
95 |
-
treat = "Surgery, Consider Chemotherapy, Hormone Therapy, and Radiation Therapy"
|
96 |
-
else:
|
97 |
-
treat = "Surgery, Hormone Therapy, and Radiation Therapy"
|
98 |
-
elif her2 == "Positive":
|
99 |
-
treat = "Surgery, HER2-Targeted Therapy, Chemotherapy, and Radiation Therapy"
|
100 |
-
else:
|
101 |
-
treat = "Surgery, Chemotherapy, and Radiation Therapy"
|
102 |
-
elif stage == "III":
|
103 |
-
treat = (
|
104 |
-
"Neoadjuvant Chemotherapy, Surgery, Radiation Therapy"
|
105 |
-
+ (", HER2-Targeted Therapy" if her2 == "Positive" else "")
|
106 |
-
+ (", Hormone Therapy" if er == "Positive" else "")
|
107 |
-
)
|
108 |
-
else:
|
109 |
-
treat = "Systemic Therapy (Palliative Care)"
|
110 |
-
treatment.append(treat)
|
111 |
-
|
112 |
-
return pd.DataFrame(
|
113 |
-
{
|
114 |
-
"Patient ID": patient_ids,
|
115 |
-
"Age": ages,
|
116 |
-
"Menopausal Status": menopausal_status,
|
117 |
-
"Tumor Size (cm)": tumor_sizes,
|
118 |
-
"Lymph Node Involvement": lymph_nodes,
|
119 |
-
"Tumor Grade": grades,
|
120 |
-
"Tumor Stage": stages,
|
121 |
-
"ER Status": er_status,
|
122 |
-
"PR Status": pr_status,
|
123 |
-
"HER2 Status": her2_status,
|
124 |
-
"Ki-67 Level": ki67_level,
|
125 |
-
"TNBC Status": tnbc_status,
|
126 |
-
"BRCA Mutation": brca_mutation,
|
127 |
-
"Overall Health": overall_health,
|
128 |
-
"Genomic Recurrence Score": genomic_score,
|
129 |
-
"Treatment": treatment,
|
130 |
-
}
|
131 |
-
)
|
132 |
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
# Main Streamlit App
|
135 |
-
st.title("Synthetic Data Generator")
|
136 |
-
num_patients = st.slider("Number of Patients to Generate", 10, 1000, 100)
|
137 |
if st.button("Generate Data"):
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Seed for reproducibility
|
6 |
np.random.seed(42)
|
7 |
|
8 |
+
# Function to generate synthetic Enrollments
|
9 |
+
def generate_enrollments(num_members):
|
10 |
+
primary_keys = [f"PPK_{i+1:05d}" for i in range(num_members)]
|
11 |
+
enrollments_data = {
|
12 |
+
"MEM_AGE": np.random.randint(18, 80, num_members),
|
13 |
+
"MEM_MSA_NAME": np.random.choice(["DETROIT", "HONOLULU", "LOS ANGELES"], num_members),
|
14 |
+
"MEM_STAT": np.random.choice(["ACTIVE", "INACTIVE"], num_members),
|
15 |
+
"MEMBER_ID": primary_keys,
|
16 |
+
"PRIMARY_PERSON_KEY": primary_keys,
|
17 |
+
"PAYER_LOB": np.random.choice(["MEDICAID", "COMMERCIAL", "MEDICARE"], num_members),
|
18 |
+
"PAYER_TYPE": np.random.choice(["PPO", "HMO"], num_members),
|
19 |
+
"PRIMARY_CHRONIC_CONDITION_ROLLUP_DESC": np.random.choice(["Cancer", "Diabetes", "Hypertension"], num_members),
|
20 |
+
"Count of PRIMARY_CHRONIC_CONDITION_ROLLUP_ID": np.random.randint(1, 5, num_members),
|
21 |
+
"PROD_TYPE": np.random.choice(["DENTAL", "VISION", "MEDICAL"], num_members),
|
22 |
+
"RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], num_members),
|
23 |
+
"YEARMO": np.random.randint(202201, 202412, num_members),
|
24 |
+
}
|
25 |
+
return pd.DataFrame(enrollments_data)
|
26 |
+
|
27 |
+
# Function to generate synthetic Members
|
28 |
+
def generate_members(num_members):
|
29 |
+
primary_keys = [f"PPK_{i+1:05d}" for i in range(num_members)]
|
30 |
+
members_data = {
|
31 |
+
"MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], num_members),
|
32 |
+
"MEM_GENDER": ["F"] * num_members,
|
33 |
+
"MEM_MSA_NAME": np.random.choice(["DETROIT", "HONOLULU", "LOS ANGELES"], num_members),
|
34 |
+
"MEM_RACE": np.random.choice(["White", "Black", "Asian", None], num_members),
|
35 |
+
"MEM_STATE": np.random.choice(["MI", "HI", "CA"], num_members),
|
36 |
+
"MEM_ZIP3": np.random.randint(100, 999, num_members),
|
37 |
+
"MEMBER_ID": primary_keys,
|
38 |
+
"PRIMARY_PERSON_KEY": primary_keys,
|
39 |
+
}
|
40 |
+
return pd.DataFrame(members_data)
|
41 |
+
|
42 |
+
# Function to generate synthetic Providers
|
43 |
+
def generate_providers(num_providers):
|
44 |
+
providers_data = {
|
45 |
+
"PROV_CLINIC_STATE": np.random.choice(["MI", "HI", "CA"], num_providers),
|
46 |
+
"PROV_CLINIC_ZIP": np.random.randint(10000, 99999, num_providers),
|
47 |
+
"PROV_KEY": [f"PK_{i+1:05d}" for i in range(num_providers)],
|
48 |
+
"Sum of PROV_NPI_ORG": np.random.randint(1, 50, num_providers),
|
49 |
+
"PROV_TAXONOMY": np.random.choice(["208100000X", "207RE0101X"], num_providers),
|
50 |
+
"PROV_TYPE": np.random.choice(["Type1", "Type2"], num_providers),
|
51 |
+
}
|
52 |
+
return pd.DataFrame(providers_data)
|
53 |
+
|
54 |
+
# Function to generate synthetic Services
|
55 |
+
def generate_services(num_services, primary_keys):
|
56 |
+
services_data = {
|
57 |
+
"PRIMARY_PERSON_KEY": np.random.choice(primary_keys, num_services),
|
58 |
+
"Sum of AMT_ALLOWED": np.random.uniform(1000, 10000, num_services),
|
59 |
+
"Sum of AMT_BILLED": np.random.uniform(1000, 15000, num_services),
|
60 |
+
"Count of AMT_PAID": np.random.randint(1, 5, num_services),
|
61 |
+
"ATT_PROV_KEY": [f"PK_{i+1:05d}" for i in np.random.randint(1, len(primary_keys), num_services)],
|
62 |
+
"BILL_PROV_KEY": [f"PK_{i+1:05d}" for i in np.random.randint(1, len(primary_keys), num_services)],
|
63 |
+
"CLAIM_IN_NETWORK": np.random.choice(["Y", "N", None], num_services),
|
64 |
+
"RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], num_services),
|
65 |
+
"SERVICE_SETTING": np.random.choice(["OUTPATIENT", "INPATIENT"], num_services),
|
66 |
+
"Sum of SERVICE_LINE": np.random.randint(1, 10, num_services),
|
67 |
+
"Sum of SV_UNITS": np.random.randint(1, 100, num_services),
|
68 |
+
"YEARMO": np.random.randint(202201, 202412, num_services),
|
69 |
+
}
|
70 |
+
return pd.DataFrame(services_data)
|
71 |
+
|
72 |
+
# Function to generate synthetic BreastCancer data
|
73 |
+
def generate_breast_cancer_data(num_patients):
|
74 |
+
patient_ids = [f"PPK_{i+1:05d}" for i in range(num_patients)]
|
75 |
+
breast_cancer_data = {
|
76 |
+
"Patient ID": patient_ids,
|
77 |
+
"Age": np.random.randint(30, 80, num_patients),
|
78 |
+
"Menopausal Status": np.random.choice(["Post-menopausal", "Pre-menopausal"], num_patients),
|
79 |
+
"Tumor Size (cm)": np.round(np.random.lognormal(mean=0.7, sigma=0.5, size=num_patients), 2),
|
80 |
+
"Lymph Node Involvement": np.random.choice(["Positive", "Negative"], num_patients),
|
81 |
+
"Tumor Grade": np.random.choice([1, 2, 3], num_patients),
|
82 |
+
"Tumor Stage": np.random.choice(["I", "II", "III", "IV"], num_patients),
|
83 |
+
"ER Status": np.random.choice(["Positive", "Negative"], num_patients),
|
84 |
+
"PR Status": np.random.choice(["Positive", "Negative"], num_patients),
|
85 |
+
"HER2 Status": np.random.choice(["Positive", "Negative"], num_patients),
|
86 |
+
"Ki-67 Level": np.random.choice(["High", "Low"], num_patients),
|
87 |
+
"TNBC Status": np.random.choice(["Positive", "Negative"], num_patients),
|
88 |
+
"BRCA Mutation": np.random.choice(["Positive", "Negative"], num_patients),
|
89 |
+
"Overall Health": np.random.choice(["Good", "Poor"], num_patients),
|
90 |
+
"Genomic Recurrence Score": np.random.choice(["Low", "Intermediate", "High", "N/A"], num_patients),
|
91 |
+
"Treatment": np.random.choice(["Surgery", "Chemotherapy", "Radiation Therapy"], num_patients),
|
92 |
+
}
|
93 |
+
return pd.DataFrame(breast_cancer_data)
|
94 |
|
95 |
+
# Main Streamlit App
|
96 |
+
st.title("Synthetic Medical Data Generator")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
# Input parameters
|
99 |
+
num_members = st.slider("Number of Members to Generate", 10, 1000, 100)
|
100 |
+
num_providers = st.slider("Number of Providers to Generate", 10, 500, 100)
|
101 |
+
num_services = st.slider("Number of Services to Generate", 10, 2000, 500)
|
102 |
+
num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 500, 100)
|
103 |
|
|
|
|
|
|
|
104 |
if st.button("Generate Data"):
|
105 |
+
enrollments_df = generate_enrollments(num_members)
|
106 |
+
members_df = generate_members(num_members)
|
107 |
+
providers_df = generate_providers(num_providers)
|
108 |
+
services_df = generate_services(num_services, enrollments_df["PRIMARY_PERSON_KEY"].tolist())
|
109 |
+
breast_cancer_df = generate_breast_cancer_data(num_patients)
|
110 |
+
|
111 |
+
# Display data
|
112 |
+
st.subheader("Enrollments Data")
|
113 |
+
st.dataframe(enrollments_df.head())
|
114 |
+
st.download_button("Download Enrollments", enrollments_df.to_csv(index=False), "enrollments.csv")
|
115 |
+
|
116 |
+
st.subheader("Members Data")
|
117 |
+
st.dataframe(members_df.head())
|
118 |
+
st.download_button("Download Members", members_df.to_csv(index=False), "members.csv")
|
119 |
+
|
120 |
+
st.subheader("Providers Data")
|
121 |
+
st.dataframe(providers_df.head())
|
122 |
+
st.download_button("Download Providers", providers_df.to_csv(index=False), "providers.csv")
|
123 |
+
|
124 |
+
st.subheader("Services Data")
|
125 |
+
st.dataframe(services_df.head())
|
126 |
+
st.download_button("Download Services", services_df.to_csv(index=False), "services.csv")
|
127 |
+
|
128 |
+
st.subheader("Breast Cancer Data")
|
129 |
+
st.dataframe(breast_cancer_df.head())
|
130 |
+
st.download_button("Download Breast Cancer Data", breast_cancer_df.to_csv(index=False), "breast_cancer.csv")
|