File size: 30,477 Bytes
4cf80d2
 
 
 
 
 
c6fcf0b
 
 
 
4cf80d2
 
 
 
 
 
 
 
 
 
 
 
 
 
c6fcf0b
 
 
 
 
 
b494b53
 
 
c6fcf0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cf80d2
c6fcf0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cf80d2
cfec577
c6fcf0b
cfec577
4cf80d2
 
 
c6fcf0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c08c98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b494b53
 
c08c98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b494b53
 
 
 
 
 
 
c08c98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
import gzip
import os
import pickle
from glob import glob
from time import sleep

from functools import lru_cache
import concurrent.futures
from typing import Dict, Tuple, List

import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch
from PIL import Image, ImageDraw
from plotly.subplots import make_subplots

IMAGE_SIZE = 400
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
GRID_NUM = 14
pkl_root = "./data/out"
preloaded_data = {}


# Global cache for data
_CACHE = {
    'data_dict': {},
    'sae_data_dict': {},
    'model_data': {},
    'segmasks': {},
    'top_images': {},
    'precomputed_activations' = {}

}

def load_all_data(image_root: str, pkl_root: str) -> Tuple[Dict, Dict]:
    """Load all data with optimized parallel processing."""
    # Load images in parallel
    with concurrent.futures.ThreadPoolExecutor() as executor:
        image_files = glob(f"{image_root}/*")
        future_to_file = {
            executor.submit(_load_image_file, image_file): image_file 
            for image_file in image_files
        }
        
        for future in concurrent.futures.as_completed(future_to_file):
            image_file = future_to_file[future]
            image_name = os.path.basename(image_file).split(".")[0]
            result = future.result()
            if result is not None:
                _CACHE['data_dict'][image_name] = result

    # Load SAE data
    with open("./data/sae_data/mean_acts.pkl", "rb") as f:
        _CACHE['sae_data_dict']["mean_acts"] = pickle.load(f)

    # Load mean act values in parallel
    datasets = ["imagenet", "imagenet-sketch", "caltech101"]
    _CACHE['sae_data_dict']["mean_act_values"] = {}
    
    with concurrent.futures.ThreadPoolExecutor() as executor:
        future_to_dataset = {
            executor.submit(_load_mean_act_values, dataset): dataset 
            for dataset in datasets
        }
        
        for future in concurrent.futures.as_completed(future_to_dataset):
            dataset = future_to_dataset[future]
            result = future.result()
            if result is not None:
                _CACHE['sae_data_dict']["mean_act_values"][dataset] = result

    return _CACHE['data_dict'], _CACHE['sae_data_dict']

def _load_image_file(image_file: str) -> Dict:
    """Helper function to load a single image file."""
    try:
        image = Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE))
        return {
            "image": image,
            "image_path": image_file,
        }
    except Exception as e:
        print(f"Error loading {image_file}: {e}")
        return None

def _load_mean_act_values(dataset: str) -> np.ndarray:
    """Helper function to load mean act values for a dataset."""
    try:
        with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
            return pickle.load(f)
    except Exception as e:
        print(f"Error loading mean act values for {dataset}: {e}")
        return None

@lru_cache(maxsize=1024)
def get_data(image_name: str, model_name: str) -> np.ndarray:
    """Cached function to get model data."""
    cache_key = f"{model_name}_{image_name}"
    if cache_key not in _CACHE['model_data']:
        data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
        with gzip.open(data_dir, "rb") as f:
            _CACHE['model_data'][cache_key] = pickle.load(f)
    return _CACHE['model_data'][cache_key]

@lru_cache(maxsize=1024)
def get_activation_distribution(image_name: str, model_type: str) -> np.ndarray:
    """Cached function to get activation distribution."""
    activation = get_data(image_name, model_type)[0]
    noisy_features_indices = (
        (_CACHE['sae_data_dict']["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
    )
    activation[:, noisy_features_indices] = 0
    return activation

@lru_cache(maxsize=1024)
def get_segmask(selected_image: str, slider_value: int, model_type: str) -> np.ndarray:
    """Cached function to get segmentation mask."""
    cache_key = f"{selected_image}_{slider_value}_{model_type}"
    if cache_key not in _CACHE['segmasks']:
        image = _CACHE['data_dict'][selected_image]["image"]
        sae_act = get_data(selected_image, model_type)[0]
        temp = sae_act[:, slider_value]
        
        mask = torch.Tensor(temp[1:].reshape(14, 14)).view(1, 1, 14, 14)
        mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
        mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)

        base_opacity = 30
        image_array = np.array(image)[..., :3]
        rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
        rgba_overlay[..., :3] = image_array[..., :3]

        darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
        rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
        rgba_overlay[..., 3] = 255

        _CACHE['segmasks'][cache_key] = rgba_overlay
        
    return _CACHE['segmasks'][cache_key]

@lru_cache(maxsize=1024)
def get_top_images(slider_value: int, toggle_btn: bool) -> List[Image.Image]:
    """Cached function to get top images."""
    cache_key = f"{slider_value}_{toggle_btn}"
    if cache_key not in _CACHE['top_images']:
        dataset_path = "./data/top_images_masked" if toggle_btn else "./data/top_images"
        paths = [
            os.path.join(dataset_path, dataset, f"{slider_value}.jpg")
            for dataset in ["imagenet", "imagenet-sketch", "caltech101"]
        ]
        
        _CACHE['top_images'][cache_key] = [
            Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255))
            for path in paths
        ]
        
    return _CACHE['top_images'][cache_key]


# def preload_activation(image_name):
#     for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
#         image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz"
#         with gzip.open(image_file, "rb") as f:
#             preloaded_data[model] = pickle.load(f)


# def get_activation_distribution(image_name: str, model_type: str):
#     activation = get_data(image_name, model_type)[0]

#     noisy_features_indices = (
#         (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
#     )
#     activation[:, noisy_features_indices] = 0

#     return activation


def get_grid_loc(evt, image):
    # Get click coordinates
    x, y = evt._data["index"][0], evt._data["index"][1]

    cell_width = image.width // GRID_NUM
    cell_height = image.height // GRID_NUM

    grid_x = x // cell_width
    grid_y = y // cell_height
    return grid_x, grid_y, cell_width, cell_height


def highlight_grid(evt: gr.EventData, image_name):
    image = data_dict[image_name]["image"]
    grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)

    highlighted_image = image.copy()
    draw = ImageDraw.Draw(highlighted_image)
    box = [
        grid_x * cell_width,
        grid_y * cell_height,
        (grid_x + 1) * cell_width,
        (grid_y + 1) * cell_height,
    ]
    draw.rectangle(box, outline="red", width=3)

    return highlighted_image


def load_image(img_name):
    return Image.open(data_dict[img_name]["image_path"]).resize(
        (IMAGE_SIZE, IMAGE_SIZE)
    )


def plot_activations(
    all_activation,
    tile_activations=None,
    grid_x=None,
    grid_y=None,
    top_k=5,
    colors=("blue", "cyan"),
    model_name="CLIP",
):
    fig = go.Figure()

    def _add_scatter_with_annotation(fig, activations, model_name, color, label):
        fig.add_trace(
            go.Scatter(
                x=np.arange(len(activations)),
                y=activations,
                mode="lines",
                name=label,
                line=dict(color=color, dash="solid"),
                showlegend=True,
            )
        )
        top_neurons = np.argsort(activations)[::-1][:top_k]
        for idx in top_neurons:
            fig.add_annotation(
                x=idx,
                y=activations[idx],
                text=str(idx),
                showarrow=True,
                arrowhead=2,
                ax=0,
                ay=-15,
                arrowcolor=color,
                opacity=0.7,
            )
        return fig

    label = f"{model_name.split('-')[-0]} Image-level"
    fig = _add_scatter_with_annotation(
        fig, all_activation, model_name, colors[0], label
    )
    if tile_activations is not None:
        label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})"
        fig = _add_scatter_with_annotation(
            fig, tile_activations, model_name, colors[1], label
        )

    fig.update_layout(
        title="Activation Distribution",
        xaxis_title="SAE latent index",
        yaxis_title="Activation Value",
        template="plotly_white",
    )
    fig.update_layout(
        legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5)
    )

    return fig


def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors):
    activation = get_activation_distribution(selected_image, model_name)
    all_activation = activation.mean(0)

    tile_activations = None
    grid_x = None
    grid_y = None

    if evt is not None:
        if evt._data is not None:
            image = data_dict[selected_image]["image"]
            grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
            token_idx = grid_y * GRID_NUM + grid_x + 1
            tile_activations = activation[token_idx]

    fig = plot_activations(
        all_activation,
        tile_activations,
        grid_x,
        grid_y,
        top_k=5,
        model_name=model_name,
        colors=colors,
    )
    return fig


def plot_activation_distribution(
    evt: gr.EventData, selected_image: str, model_name: str
):
    fig = make_subplots(
        rows=2,
        cols=1,
        shared_xaxes=True,
        subplot_titles=["CLIP Activation", f"{model_name} Activation"],
    )

    fig_clip = get_activations(
        evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")
    )
    fig_maple = get_activations(
        evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")
    )

    def _attach_fig(fig, sub_fig, row, col, yref):
        for trace in sub_fig.data:
            fig.add_trace(trace, row=row, col=col)

        for annotation in sub_fig.layout.annotations:
            annotation.update(yref=yref)
            fig.add_annotation(annotation)
        return fig

    fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
    fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")

    fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
    fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
    fig.update_yaxes(title_text="Activation Value", row=1, col=1)
    fig.update_yaxes(title_text="Activation Value", row=2, col=1)
    fig.update_layout(
        # height=500,
        # title="Activation Distributions",
        template="plotly_white",
        showlegend=True,
        legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
        margin=dict(l=20, r=20, t=40, b=20),
    )

    return fig


# def get_segmask(selected_image, slider_value, model_type):
#     image = data_dict[selected_image]["image"]
#     sae_act = get_data(selected_image, model_type)[0]
#     temp = sae_act[:, slider_value]
#     try:
#         mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14)
#     except Exception as e:
#         print(sae_act.shape, slider_value)
#     mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][
#         0
#     ].numpy()
#     mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)

#     base_opacity = 30
#     image_array = np.array(image)[..., :3]
#     rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
#     rgba_overlay[..., :3] = image_array[..., :3]

#     darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
#     rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
#     rgba_overlay[..., 3] = 255  # Fully opaque

#     return rgba_overlay


# def get_top_images(slider_value, toggle_btn):
#     def _get_images(dataset_path):
#         top_image_paths = [
#             os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
#             os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
#             os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
#         ]
#         top_images = [
#             (
#                 Image.open(path)
#                 if os.path.exists(path)
#                 else Image.new("RGB", (256, 256), (255, 255, 255))
#             )
#             for path in top_image_paths
#         ]
#         return top_images

#     if toggle_btn:
#         top_images = _get_images("./data/top_images_masked")
#     else:
#         top_images = _get_images("./data/top_images")
#     return top_images


def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
    slider_value = int(slider_value.split("-")[-1])
    rgba_overlay = get_segmask(selected_image, slider_value, model_type)
    top_images = get_top_images(slider_value, toggle_btn)

    act_values = []
    for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
        act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5]
        act_value = [str(round(value, 3)) for value in act_value]
        act_value = " | ".join(act_value)
        out = f"#### Activation values: {act_value}"
        act_values.append(out)

    return rgba_overlay, top_images, act_values


def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
    rgba_overlay, top_images, act_values = show_activation_heatmap(
        selected_image, slider_value, "CLIP", toggle_btn
    )
    sleep(0.1)
    return (
        rgba_overlay,
        top_images[0],
        top_images[1],
        top_images[2],
        act_values[0],
        act_values[1],
        act_values[2],
    )


def show_activation_heatmap_maple(selected_image, slider_value, model_name):
    slider_value = int(slider_value.split("-")[-1])
    rgba_overlay = get_segmask(selected_image, slider_value, model_name)
    sleep(0.1)
    return rgba_overlay


def get_init_radio_options(selected_image, model_name):
    clip_neuron_dict = {}
    maple_neuron_dict = {}

    def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
        activations = get_activation_distribution(selected_image, model_name).mean(0)
        top_neurons = list(np.argsort(activations)[::-1][:top_k])
        for top_neuron in top_neurons:
            neuron_dict[top_neuron] = activations[top_neuron]
        sorted_dict = dict(
            sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
        )
        return sorted_dict

    clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict)
    maple_neuron_dict = _get_top_actvation(
        selected_image, model_name, maple_neuron_dict
    )

    radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)

    return radio_choices


def get_radio_names(clip_neuron_dict, maple_neuron_dict):
    clip_keys = list(clip_neuron_dict.keys())
    maple_keys = list(maple_neuron_dict.keys())

    common_keys = list(set(clip_keys).intersection(set(maple_keys)))
    clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
    maple_only_keys = list(set(maple_keys) - (set(clip_keys)))

    common_keys.sort(
        key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True
    )
    clip_only_keys.sort(reverse=True)
    maple_only_keys.sort(reverse=True)

    out = []
    out.extend([f"common-{i}" for i in common_keys[:5]])
    out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
    out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])

    return out


def update_radio_options(evt: gr.EventData, selected_image, model_name):
    def _sort_and_save_top_k(activations, neuron_dict, top_k=5):
        top_neurons = list(np.argsort(activations)[::-1][:top_k])
        for top_neuron in top_neurons:
            neuron_dict[top_neuron] = activations[top_neuron]

    def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
        all_activation = get_activation_distribution(selected_image, model_name)
        image_activation = all_activation.mean(0)
        _sort_and_save_top_k(image_activation, neuron_dict)

        if evt is not None:
            if evt._data is not None and isinstance(evt._data["index"], list):
                image = data_dict[selected_image]["image"]
                grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
                token_idx = grid_y * GRID_NUM + grid_x + 1
                tile_activations = all_activation[token_idx]
                _sort_and_save_top_k(tile_activations, neuron_dict)

        sorted_dict = dict(
            sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
        )
        return sorted_dict

    clip_neuron_dict = {}
    maple_neuron_dict = {}
    clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict)
    maple_neuron_dict = _get_top_actvation(
        evt, selected_image, model_name, maple_neuron_dict
    )

    clip_keys = list(clip_neuron_dict.keys())
    maple_keys = list(maple_neuron_dict.keys())

    common_keys = list(set(clip_keys).intersection(set(maple_keys)))
    clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
    maple_only_keys = list(set(maple_keys) - (set(clip_keys)))

    common_keys.sort(
        key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True
    )
    clip_only_keys.sort(reverse=True)
    maple_only_keys.sort(reverse=True)

    out = []
    out.extend([f"common-{i}" for i in common_keys[:5]])
    out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
    out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])

    radio_choices = gr.Radio(
        choices=out, label="Top activating SAE latent", value=out[0]
    )
    sleep(0.1)
    return radio_choices


def update_markdown(option_value):
    latent_idx = int(option_value.split("-")[-1])
    out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
    out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
    return out_1, out_2


def get_data(image_name, model_name):
    pkl_root = "./data/out"
    data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
    with gzip.open(data_dir, "rb") as f:
        data = pickle.load(f)
        out = data

    return out


def update_all(selected_image, slider_value, toggle_btn, model_name):
    (
        seg_mask_display,
        top_image_1,
        top_image_2,
        top_image_3,
        act_value_1,
        act_value_2,
        act_value_3,
    ) = show_activation_heatmap_clip(selected_image, slider_value, toggle_btn)
    seg_mask_display_maple = show_activation_heatmap_maple(
        selected_image, slider_value, model_name
    )
    markdown_display, markdown_display_2 = update_markdown(slider_value)

    return (
        seg_mask_display,
        seg_mask_display_maple,
        top_image_1,
        top_image_2,
        top_image_3,
        act_value_1,
        act_value_2,
        act_value_3,
        markdown_display,
        markdown_display_2,
    )


def load_all_data(image_root, pkl_root):
    image_files = glob(f"{image_root}/*")
    data_dict = {}
    for image_file in image_files:
        image_name = os.path.basename(image_file).split(".")[0]
        if image_file not in data_dict:
            data_dict[image_name] = {
                "image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
                "image_path": image_file,
            }

    sae_data_dict = {}
    with open("./data/sae_data/mean_acts.pkl", "rb") as f:
        data = pickle.load(f)
        sae_data_dict["mean_acts"] = data

    sae_data_dict["mean_act_values"] = {}
    for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
        with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
            data = pickle.load(f)
            sae_data_dict["mean_act_values"][dataset] = data

    return data_dict, sae_data_dict


def preload_all_model_data():
    """Preload all model data into memory at startup"""
    print("Preloading model data...")
    for image_name in data_dict.keys():
        for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
            try:
                data = get_data(image_name, model_name)
                cache_key = f"{model_name}_{image_name}"
                _CACHE['model_data'][cache_key] = data
            except Exception as e:
                print(f"Error preloading {cache_key}: {e}")

def precompute_activations():
    """Precompute and cache common activation patterns"""
    print("Precomputing activations...")
    for image_name in data_dict.keys():
        for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
            activation = get_activation_distribution(image_name, model_name)
            cache_key = f"activation_{model_name}_{image_name}"
            _CACHE['precomputed_activations'][cache_key] = activation.mean(0)



def precompute_segmasks():
    """Precompute common segmentation masks"""
    print("Precomputing segmentation masks...")
    for image_name in data_dict.keys():
        for model_type in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
            for slider_value in range(0, 100):  # Adjust range as needed
                try:
                    mask = get_segmask(image_name, slider_value, model_type)
                    cache_key = f"{image_name}_{slider_value}_{model_type}"
                    _CACHE['segmasks'][cache_key] = mask
                except Exception as e:
                    print(f"Error precomputing mask {cache_key}: {e}")

data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
default_image_name = "christmas-imagenet"

with gr.Blocks(
    theme=gr.themes.Citrus(),
    css="""
    .image-row .gr-image { margin: 0 !important; padding: 0 !important; }
    .image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
""",
) as demo:
    with gr.Row():
        with gr.Column():
            # Left View: Image selection and click handling
            gr.Markdown("## Select input image and patch on the image")
            image_selector = gr.Dropdown(
                choices=list(data_dict.keys()),
                value=default_image_name,
                label="Select Image",
            )
            image_display = gr.Image(
                value=data_dict[default_image_name]["image"],
                type="pil",
                interactive=True,
            )

            # Update image display when a new image is selected
            image_selector.change(
                fn=lambda img_name: data_dict[img_name]["image"],
                inputs=image_selector,
                outputs=image_display,
            )
            image_display.select(
                fn=highlight_grid, inputs=[image_selector], outputs=[image_display]
            )

        with gr.Column():
            gr.Markdown("## SAE latent activations of CLIP and MaPLE")
            model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
            model_selector = gr.Dropdown(
                choices=model_options,
                value=model_options[0],
                label="Select adapted model (MaPLe)",
            )
            init_plot = plot_activation_distribution(
                None, default_image_name, model_options[0]
            )
            neuron_plot = gr.Plot(
                label="Neuron Activation", value=init_plot, show_label=False
            )

            image_selector.change(
                fn=plot_activation_distribution,
                inputs=[image_selector, model_selector],
                outputs=neuron_plot,
            )
            image_display.select(
                fn=plot_activation_distribution,
                inputs=[image_selector, model_selector],
                outputs=neuron_plot,
            )
            model_selector.change(
                fn=load_image, inputs=[image_selector], outputs=image_display
            )
            model_selector.change(
                fn=plot_activation_distribution,
                inputs=[image_selector, model_selector],
                outputs=neuron_plot,
            )

    with gr.Row():
        with gr.Column():
            radio_names = get_init_radio_options(default_image_name, model_options[0])

            feautre_idx = radio_names[0].split("-")[-1]
            markdown_display = gr.Markdown(
                f"## Segmentation mask for the selected SAE latent - {feautre_idx}"
            )
            init_seg, init_tops, init_values = show_activation_heatmap(
                default_image_name, radio_names[0], "CLIP"
            )

            gr.Markdown("### Localize SAE latent activation using CLIP")
            seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
            init_seg_maple, _, _ = show_activation_heatmap(
                default_image_name, radio_names[0], model_options[0]
            )
            gr.Markdown("### Localize SAE latent activation using MaPLE")
            seg_mask_display_maple = gr.Image(
                value=init_seg_maple, type="pil", show_label=False
            )

        with gr.Column():
            gr.Markdown("## Top activating SAE latent index")

            radio_choices = gr.Radio(
                choices=radio_names,
                label="Top activating SAE latent",
                interactive=True,
                value=radio_names[0],
            )
            toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)

            markdown_display_2 = gr.Markdown(
                f"## Top reference images for the selected SAE latent - {feautre_idx}"
            )

            gr.Markdown("### ImageNet")
            top_image_1 = gr.Image(
                value=init_tops[0], type="pil", label="ImageNet", show_label=False
            )
            act_value_1 = gr.Markdown(init_values[0])

            gr.Markdown("### ImageNet-Sketch")
            top_image_2 = gr.Image(
                value=init_tops[1],
                type="pil",
                label="ImageNet-Sketch",
                show_label=False,
            )
            act_value_2 = gr.Markdown(init_values[1])

            gr.Markdown("### Caltech101")
            top_image_3 = gr.Image(
                value=init_tops[2], type="pil", label="Caltech101", show_label=False
            )
            act_value_3 = gr.Markdown(init_values[2])

            image_display.select(
                fn=update_radio_options,
                inputs=[image_selector, model_selector],
                outputs=[radio_choices],
            )

            model_selector.change(
                fn=update_radio_options,
                inputs=[image_selector, model_selector],
                outputs=[radio_choices],
            )

            image_selector.select(
                fn=update_radio_options,
                inputs=[image_selector, model_selector],
                outputs=[radio_choices],
            )

        radio_choices.change(
            fn=update_all,
            inputs=[image_selector, radio_choices, toggle_btn, model_selector],
            outputs=[
                seg_mask_display,
                seg_mask_display_maple,
                top_image_1,
                top_image_2,
                top_image_3,
                act_value_1,
                act_value_2,
                act_value_3,
                markdown_display,
                markdown_display_2,
            ],
        )

        toggle_btn.change(
            fn=show_activation_heatmap_clip,
            inputs=[image_selector, radio_choices, toggle_btn],
            outputs=[
                seg_mask_display,
                top_image_1,
                top_image_2,
                top_image_3,
                act_value_1,
                act_value_2,
                act_value_3,
            ],
        )

    # Launch the app
    # demo.queue()
    # demo.launch()

    
# if __name__ == "__main__":
#     demo.queue()  # Enable queuing for better handling of concurrent users
#     demo.launch(
#         server_name="0.0.0.0",  # Allow external access
#         server_port=7860,
#         share=False,  # Set to True if you want to create a public URL
#         show_error=True,
#         # Optimize concurrency
#         max_threads=8,  # Adjust based on your CPU cores
#     )

if __name__ == "__main__":
    import psutil
    
    # Get system memory info
    mem = psutil.virtual_memory()
    total_ram_gb = mem.total / (1024**3)
    
    # Configure cache sizes based on available RAM
    cache_size = int(total_ram_gb * 100)  # Rough estimate: 100 entries per GB

    # Precompute all data
    print("Starting precomputation...")
    preload_all_model_data()
    precompute_activations()
    precompute_segmasks()
    print("Precomputation complete!")
    
    # Memory monitoring function
    def monitor_memory_usage():
        """Monitor and log memory usage"""
        process = psutil.Process()
        mem_info = process.memory_info()
        print(f"""
        Memory Usage:
        - RSS: {mem_info.rss / (1024**2):.2f} MB
        - VMS: {mem_info.vms / (1024**2):.2f} MB
        - Cache Size: {len(_CACHE['model_data'])} entries
        """)

    # Start periodic monitoring
    def start_memory_monitor():
        threading.Timer(300.0, start_memory_monitor).start()  # Every 5 minutes
        monitor_memory_usage()

    # Start the monitoring
    import threading
    start_memory_monitor()

    # Launch the app with memory-optimized settings
    demo.queue(max_size=min(20, int(total_ram_gb)))  # Scale queue with RAM
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        max_threads=min(16, psutil.cpu_count()),  # Scale threads with CPU
        websocket_ping_timeout=60,
        preventive_refresh=True,
        memory_limit_mb=int(total_ram_gb * 1024 * 0.8)  # Use up to 80% of RAM
    )