File size: 30,477 Bytes
4cf80d2 c6fcf0b 4cf80d2 c6fcf0b b494b53 c6fcf0b 4cf80d2 c6fcf0b 4cf80d2 cfec577 c6fcf0b cfec577 4cf80d2 c6fcf0b c08c98f b494b53 c08c98f b494b53 c08c98f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
import gzip
import os
import pickle
from glob import glob
from time import sleep
from functools import lru_cache
import concurrent.futures
from typing import Dict, Tuple, List
import gradio as gr
import numpy as np
import plotly.graph_objects as go
import torch
from PIL import Image, ImageDraw
from plotly.subplots import make_subplots
IMAGE_SIZE = 400
DATASET_LIST = ["imagenet", "oxford_flowers", "ucf101", "caltech101", "dtd", "eurosat"]
GRID_NUM = 14
pkl_root = "./data/out"
preloaded_data = {}
# Global cache for data
_CACHE = {
'data_dict': {},
'sae_data_dict': {},
'model_data': {},
'segmasks': {},
'top_images': {},
'precomputed_activations' = {}
}
def load_all_data(image_root: str, pkl_root: str) -> Tuple[Dict, Dict]:
"""Load all data with optimized parallel processing."""
# Load images in parallel
with concurrent.futures.ThreadPoolExecutor() as executor:
image_files = glob(f"{image_root}/*")
future_to_file = {
executor.submit(_load_image_file, image_file): image_file
for image_file in image_files
}
for future in concurrent.futures.as_completed(future_to_file):
image_file = future_to_file[future]
image_name = os.path.basename(image_file).split(".")[0]
result = future.result()
if result is not None:
_CACHE['data_dict'][image_name] = result
# Load SAE data
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
_CACHE['sae_data_dict']["mean_acts"] = pickle.load(f)
# Load mean act values in parallel
datasets = ["imagenet", "imagenet-sketch", "caltech101"]
_CACHE['sae_data_dict']["mean_act_values"] = {}
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_dataset = {
executor.submit(_load_mean_act_values, dataset): dataset
for dataset in datasets
}
for future in concurrent.futures.as_completed(future_to_dataset):
dataset = future_to_dataset[future]
result = future.result()
if result is not None:
_CACHE['sae_data_dict']["mean_act_values"][dataset] = result
return _CACHE['data_dict'], _CACHE['sae_data_dict']
def _load_image_file(image_file: str) -> Dict:
"""Helper function to load a single image file."""
try:
image = Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE))
return {
"image": image,
"image_path": image_file,
}
except Exception as e:
print(f"Error loading {image_file}: {e}")
return None
def _load_mean_act_values(dataset: str) -> np.ndarray:
"""Helper function to load mean act values for a dataset."""
try:
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
return pickle.load(f)
except Exception as e:
print(f"Error loading mean act values for {dataset}: {e}")
return None
@lru_cache(maxsize=1024)
def get_data(image_name: str, model_name: str) -> np.ndarray:
"""Cached function to get model data."""
cache_key = f"{model_name}_{image_name}"
if cache_key not in _CACHE['model_data']:
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
with gzip.open(data_dir, "rb") as f:
_CACHE['model_data'][cache_key] = pickle.load(f)
return _CACHE['model_data'][cache_key]
@lru_cache(maxsize=1024)
def get_activation_distribution(image_name: str, model_type: str) -> np.ndarray:
"""Cached function to get activation distribution."""
activation = get_data(image_name, model_type)[0]
noisy_features_indices = (
(_CACHE['sae_data_dict']["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
)
activation[:, noisy_features_indices] = 0
return activation
@lru_cache(maxsize=1024)
def get_segmask(selected_image: str, slider_value: int, model_type: str) -> np.ndarray:
"""Cached function to get segmentation mask."""
cache_key = f"{selected_image}_{slider_value}_{model_type}"
if cache_key not in _CACHE['segmasks']:
image = _CACHE['data_dict'][selected_image]["image"]
sae_act = get_data(selected_image, model_type)[0]
temp = sae_act[:, slider_value]
mask = torch.Tensor(temp[1:].reshape(14, 14)).view(1, 1, 14, 14)
mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][0].numpy()
mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
base_opacity = 30
image_array = np.array(image)[..., :3]
rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
rgba_overlay[..., :3] = image_array[..., :3]
darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
rgba_overlay[..., 3] = 255
_CACHE['segmasks'][cache_key] = rgba_overlay
return _CACHE['segmasks'][cache_key]
@lru_cache(maxsize=1024)
def get_top_images(slider_value: int, toggle_btn: bool) -> List[Image.Image]:
"""Cached function to get top images."""
cache_key = f"{slider_value}_{toggle_btn}"
if cache_key not in _CACHE['top_images']:
dataset_path = "./data/top_images_masked" if toggle_btn else "./data/top_images"
paths = [
os.path.join(dataset_path, dataset, f"{slider_value}.jpg")
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]
]
_CACHE['top_images'][cache_key] = [
Image.open(path) if os.path.exists(path) else Image.new("RGB", (256, 256), (255, 255, 255))
for path in paths
]
return _CACHE['top_images'][cache_key]
# def preload_activation(image_name):
# for model in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
# image_file = f"{pkl_root}/{model}/{image_name}.pkl.gz"
# with gzip.open(image_file, "rb") as f:
# preloaded_data[model] = pickle.load(f)
# def get_activation_distribution(image_name: str, model_type: str):
# activation = get_data(image_name, model_type)[0]
# noisy_features_indices = (
# (sae_data_dict["mean_acts"]["imagenet"] > 0.1).nonzero()[0].tolist()
# )
# activation[:, noisy_features_indices] = 0
# return activation
def get_grid_loc(evt, image):
# Get click coordinates
x, y = evt._data["index"][0], evt._data["index"][1]
cell_width = image.width // GRID_NUM
cell_height = image.height // GRID_NUM
grid_x = x // cell_width
grid_y = y // cell_height
return grid_x, grid_y, cell_width, cell_height
def highlight_grid(evt: gr.EventData, image_name):
image = data_dict[image_name]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
highlighted_image = image.copy()
draw = ImageDraw.Draw(highlighted_image)
box = [
grid_x * cell_width,
grid_y * cell_height,
(grid_x + 1) * cell_width,
(grid_y + 1) * cell_height,
]
draw.rectangle(box, outline="red", width=3)
return highlighted_image
def load_image(img_name):
return Image.open(data_dict[img_name]["image_path"]).resize(
(IMAGE_SIZE, IMAGE_SIZE)
)
def plot_activations(
all_activation,
tile_activations=None,
grid_x=None,
grid_y=None,
top_k=5,
colors=("blue", "cyan"),
model_name="CLIP",
):
fig = go.Figure()
def _add_scatter_with_annotation(fig, activations, model_name, color, label):
fig.add_trace(
go.Scatter(
x=np.arange(len(activations)),
y=activations,
mode="lines",
name=label,
line=dict(color=color, dash="solid"),
showlegend=True,
)
)
top_neurons = np.argsort(activations)[::-1][:top_k]
for idx in top_neurons:
fig.add_annotation(
x=idx,
y=activations[idx],
text=str(idx),
showarrow=True,
arrowhead=2,
ax=0,
ay=-15,
arrowcolor=color,
opacity=0.7,
)
return fig
label = f"{model_name.split('-')[-0]} Image-level"
fig = _add_scatter_with_annotation(
fig, all_activation, model_name, colors[0], label
)
if tile_activations is not None:
label = f"{model_name.split('-')[-0]} Tile ({grid_x}, {grid_y})"
fig = _add_scatter_with_annotation(
fig, tile_activations, model_name, colors[1], label
)
fig.update_layout(
title="Activation Distribution",
xaxis_title="SAE latent index",
yaxis_title="Activation Value",
template="plotly_white",
)
fig.update_layout(
legend=dict(orientation="h", yanchor="middle", y=0.5, xanchor="center", x=0.5)
)
return fig
def get_activations(evt: gr.EventData, selected_image: str, model_name: str, colors):
activation = get_activation_distribution(selected_image, model_name)
all_activation = activation.mean(0)
tile_activations = None
grid_x = None
grid_y = None
if evt is not None:
if evt._data is not None:
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
tile_activations = activation[token_idx]
fig = plot_activations(
all_activation,
tile_activations,
grid_x,
grid_y,
top_k=5,
model_name=model_name,
colors=colors,
)
return fig
def plot_activation_distribution(
evt: gr.EventData, selected_image: str, model_name: str
):
fig = make_subplots(
rows=2,
cols=1,
shared_xaxes=True,
subplot_titles=["CLIP Activation", f"{model_name} Activation"],
)
fig_clip = get_activations(
evt, selected_image, "CLIP", colors=("#00b4d8", "#90e0ef")
)
fig_maple = get_activations(
evt, selected_image, model_name, colors=("#ff5a5f", "#ffcad4")
)
def _attach_fig(fig, sub_fig, row, col, yref):
for trace in sub_fig.data:
fig.add_trace(trace, row=row, col=col)
for annotation in sub_fig.layout.annotations:
annotation.update(yref=yref)
fig.add_annotation(annotation)
return fig
fig = _attach_fig(fig, fig_clip, row=1, col=1, yref="y1")
fig = _attach_fig(fig, fig_maple, row=2, col=1, yref="y2")
fig.update_xaxes(title_text="SAE Latent Index", row=2, col=1)
fig.update_xaxes(title_text="SAE Latent Index", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=1, col=1)
fig.update_yaxes(title_text="Activation Value", row=2, col=1)
fig.update_layout(
# height=500,
# title="Activation Distributions",
template="plotly_white",
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5),
margin=dict(l=20, r=20, t=40, b=20),
)
return fig
# def get_segmask(selected_image, slider_value, model_type):
# image = data_dict[selected_image]["image"]
# sae_act = get_data(selected_image, model_type)[0]
# temp = sae_act[:, slider_value]
# try:
# mask = torch.Tensor(temp[1:,].reshape(14, 14)).view(1, 1, 14, 14)
# except Exception as e:
# print(sae_act.shape, slider_value)
# mask = torch.nn.functional.interpolate(mask, (image.height, image.width))[0][
# 0
# ].numpy()
# mask = (mask - mask.min()) / (mask.max() - mask.min() + 1e-10)
# base_opacity = 30
# image_array = np.array(image)[..., :3]
# rgba_overlay = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8)
# rgba_overlay[..., :3] = image_array[..., :3]
# darkened_image = (image_array[..., :3] * (base_opacity / 255)).astype(np.uint8)
# rgba_overlay[mask == 0, :3] = darkened_image[mask == 0]
# rgba_overlay[..., 3] = 255 # Fully opaque
# return rgba_overlay
# def get_top_images(slider_value, toggle_btn):
# def _get_images(dataset_path):
# top_image_paths = [
# os.path.join(dataset_path, "imagenet", f"{slider_value}.jpg"),
# os.path.join(dataset_path, "imagenet-sketch", f"{slider_value}.jpg"),
# os.path.join(dataset_path, "caltech101", f"{slider_value}.jpg"),
# ]
# top_images = [
# (
# Image.open(path)
# if os.path.exists(path)
# else Image.new("RGB", (256, 256), (255, 255, 255))
# )
# for path in top_image_paths
# ]
# return top_images
# if toggle_btn:
# top_images = _get_images("./data/top_images_masked")
# else:
# top_images = _get_images("./data/top_images")
# return top_images
def show_activation_heatmap(selected_image, slider_value, model_type, toggle_btn=False):
slider_value = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value, model_type)
top_images = get_top_images(slider_value, toggle_btn)
act_values = []
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
act_value = sae_data_dict["mean_act_values"][dataset][slider_value, :5]
act_value = [str(round(value, 3)) for value in act_value]
act_value = " | ".join(act_value)
out = f"#### Activation values: {act_value}"
act_values.append(out)
return rgba_overlay, top_images, act_values
def show_activation_heatmap_clip(selected_image, slider_value, toggle_btn):
rgba_overlay, top_images, act_values = show_activation_heatmap(
selected_image, slider_value, "CLIP", toggle_btn
)
sleep(0.1)
return (
rgba_overlay,
top_images[0],
top_images[1],
top_images[2],
act_values[0],
act_values[1],
act_values[2],
)
def show_activation_heatmap_maple(selected_image, slider_value, model_name):
slider_value = int(slider_value.split("-")[-1])
rgba_overlay = get_segmask(selected_image, slider_value, model_name)
sleep(0.1)
return rgba_overlay
def get_init_radio_options(selected_image, model_name):
clip_neuron_dict = {}
maple_neuron_dict = {}
def _get_top_actvation(selected_image, model_name, neuron_dict, top_k=5):
activations = get_activation_distribution(selected_image, model_name).mean(0)
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
sorted_dict = dict(
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
)
return sorted_dict
clip_neuron_dict = _get_top_actvation(selected_image, "CLIP", clip_neuron_dict)
maple_neuron_dict = _get_top_actvation(
selected_image, model_name, maple_neuron_dict
)
radio_choices = get_radio_names(clip_neuron_dict, maple_neuron_dict)
return radio_choices
def get_radio_names(clip_neuron_dict, maple_neuron_dict):
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
common_keys.sort(
key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True
)
clip_only_keys.sort(reverse=True)
maple_only_keys.sort(reverse=True)
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
return out
def update_radio_options(evt: gr.EventData, selected_image, model_name):
def _sort_and_save_top_k(activations, neuron_dict, top_k=5):
top_neurons = list(np.argsort(activations)[::-1][:top_k])
for top_neuron in top_neurons:
neuron_dict[top_neuron] = activations[top_neuron]
def _get_top_actvation(evt, selected_image, model_name, neuron_dict):
all_activation = get_activation_distribution(selected_image, model_name)
image_activation = all_activation.mean(0)
_sort_and_save_top_k(image_activation, neuron_dict)
if evt is not None:
if evt._data is not None and isinstance(evt._data["index"], list):
image = data_dict[selected_image]["image"]
grid_x, grid_y, cell_width, cell_height = get_grid_loc(evt, image)
token_idx = grid_y * GRID_NUM + grid_x + 1
tile_activations = all_activation[token_idx]
_sort_and_save_top_k(tile_activations, neuron_dict)
sorted_dict = dict(
sorted(neuron_dict.items(), key=lambda item: item[1], reverse=True)
)
return sorted_dict
clip_neuron_dict = {}
maple_neuron_dict = {}
clip_neuron_dict = _get_top_actvation(evt, selected_image, "CLIP", clip_neuron_dict)
maple_neuron_dict = _get_top_actvation(
evt, selected_image, model_name, maple_neuron_dict
)
clip_keys = list(clip_neuron_dict.keys())
maple_keys = list(maple_neuron_dict.keys())
common_keys = list(set(clip_keys).intersection(set(maple_keys)))
clip_only_keys = list(set(clip_keys) - (set(maple_keys)))
maple_only_keys = list(set(maple_keys) - (set(clip_keys)))
common_keys.sort(
key=lambda x: max(clip_neuron_dict[x], maple_neuron_dict[x]), reverse=True
)
clip_only_keys.sort(reverse=True)
maple_only_keys.sort(reverse=True)
out = []
out.extend([f"common-{i}" for i in common_keys[:5]])
out.extend([f"CLIP-{i}" for i in clip_only_keys[:5]])
out.extend([f"MaPLE-{i}" for i in maple_only_keys[:5]])
radio_choices = gr.Radio(
choices=out, label="Top activating SAE latent", value=out[0]
)
sleep(0.1)
return radio_choices
def update_markdown(option_value):
latent_idx = int(option_value.split("-")[-1])
out_1 = f"## Segmentation mask for the selected SAE latent - {latent_idx}"
out_2 = f"## Top reference images for the selected SAE latent - {latent_idx}"
return out_1, out_2
def get_data(image_name, model_name):
pkl_root = "./data/out"
data_dir = f"{pkl_root}/{model_name}/{image_name}.pkl.gz"
with gzip.open(data_dir, "rb") as f:
data = pickle.load(f)
out = data
return out
def update_all(selected_image, slider_value, toggle_btn, model_name):
(
seg_mask_display,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
) = show_activation_heatmap_clip(selected_image, slider_value, toggle_btn)
seg_mask_display_maple = show_activation_heatmap_maple(
selected_image, slider_value, model_name
)
markdown_display, markdown_display_2 = update_markdown(slider_value)
return (
seg_mask_display,
seg_mask_display_maple,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
markdown_display,
markdown_display_2,
)
def load_all_data(image_root, pkl_root):
image_files = glob(f"{image_root}/*")
data_dict = {}
for image_file in image_files:
image_name = os.path.basename(image_file).split(".")[0]
if image_file not in data_dict:
data_dict[image_name] = {
"image": Image.open(image_file).resize((IMAGE_SIZE, IMAGE_SIZE)),
"image_path": image_file,
}
sae_data_dict = {}
with open("./data/sae_data/mean_acts.pkl", "rb") as f:
data = pickle.load(f)
sae_data_dict["mean_acts"] = data
sae_data_dict["mean_act_values"] = {}
for dataset in ["imagenet", "imagenet-sketch", "caltech101"]:
with gzip.open(f"./data/sae_data/mean_act_values_{dataset}.pkl.gz", "rb") as f:
data = pickle.load(f)
sae_data_dict["mean_act_values"][dataset] = data
return data_dict, sae_data_dict
def preload_all_model_data():
"""Preload all model data into memory at startup"""
print("Preloading model data...")
for image_name in data_dict.keys():
for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
try:
data = get_data(image_name, model_name)
cache_key = f"{model_name}_{image_name}"
_CACHE['model_data'][cache_key] = data
except Exception as e:
print(f"Error preloading {cache_key}: {e}")
def precompute_activations():
"""Precompute and cache common activation patterns"""
print("Precomputing activations...")
for image_name in data_dict.keys():
for model_name in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
activation = get_activation_distribution(image_name, model_name)
cache_key = f"activation_{model_name}_{image_name}"
_CACHE['precomputed_activations'][cache_key] = activation.mean(0)
def precompute_segmasks():
"""Precompute common segmentation masks"""
print("Precomputing segmentation masks...")
for image_name in data_dict.keys():
for model_type in ["CLIP"] + [f"MaPLE-{ds}" for ds in DATASET_LIST]:
for slider_value in range(0, 100): # Adjust range as needed
try:
mask = get_segmask(image_name, slider_value, model_type)
cache_key = f"{image_name}_{slider_value}_{model_type}"
_CACHE['segmasks'][cache_key] = mask
except Exception as e:
print(f"Error precomputing mask {cache_key}: {e}")
data_dict, sae_data_dict = load_all_data(image_root="./data/image", pkl_root=pkl_root)
default_image_name = "christmas-imagenet"
with gr.Blocks(
theme=gr.themes.Citrus(),
css="""
.image-row .gr-image { margin: 0 !important; padding: 0 !important; }
.image-row img { width: auto; height: 50px; } /* Set a uniform height for all images */
""",
) as demo:
with gr.Row():
with gr.Column():
# Left View: Image selection and click handling
gr.Markdown("## Select input image and patch on the image")
image_selector = gr.Dropdown(
choices=list(data_dict.keys()),
value=default_image_name,
label="Select Image",
)
image_display = gr.Image(
value=data_dict[default_image_name]["image"],
type="pil",
interactive=True,
)
# Update image display when a new image is selected
image_selector.change(
fn=lambda img_name: data_dict[img_name]["image"],
inputs=image_selector,
outputs=image_display,
)
image_display.select(
fn=highlight_grid, inputs=[image_selector], outputs=[image_display]
)
with gr.Column():
gr.Markdown("## SAE latent activations of CLIP and MaPLE")
model_options = [f"MaPLE-{dataset_name}" for dataset_name in DATASET_LIST]
model_selector = gr.Dropdown(
choices=model_options,
value=model_options[0],
label="Select adapted model (MaPLe)",
)
init_plot = plot_activation_distribution(
None, default_image_name, model_options[0]
)
neuron_plot = gr.Plot(
label="Neuron Activation", value=init_plot, show_label=False
)
image_selector.change(
fn=plot_activation_distribution,
inputs=[image_selector, model_selector],
outputs=neuron_plot,
)
image_display.select(
fn=plot_activation_distribution,
inputs=[image_selector, model_selector],
outputs=neuron_plot,
)
model_selector.change(
fn=load_image, inputs=[image_selector], outputs=image_display
)
model_selector.change(
fn=plot_activation_distribution,
inputs=[image_selector, model_selector],
outputs=neuron_plot,
)
with gr.Row():
with gr.Column():
radio_names = get_init_radio_options(default_image_name, model_options[0])
feautre_idx = radio_names[0].split("-")[-1]
markdown_display = gr.Markdown(
f"## Segmentation mask for the selected SAE latent - {feautre_idx}"
)
init_seg, init_tops, init_values = show_activation_heatmap(
default_image_name, radio_names[0], "CLIP"
)
gr.Markdown("### Localize SAE latent activation using CLIP")
seg_mask_display = gr.Image(value=init_seg, type="pil", show_label=False)
init_seg_maple, _, _ = show_activation_heatmap(
default_image_name, radio_names[0], model_options[0]
)
gr.Markdown("### Localize SAE latent activation using MaPLE")
seg_mask_display_maple = gr.Image(
value=init_seg_maple, type="pil", show_label=False
)
with gr.Column():
gr.Markdown("## Top activating SAE latent index")
radio_choices = gr.Radio(
choices=radio_names,
label="Top activating SAE latent",
interactive=True,
value=radio_names[0],
)
toggle_btn = gr.Checkbox(label="Show segmentation mask", value=False)
markdown_display_2 = gr.Markdown(
f"## Top reference images for the selected SAE latent - {feautre_idx}"
)
gr.Markdown("### ImageNet")
top_image_1 = gr.Image(
value=init_tops[0], type="pil", label="ImageNet", show_label=False
)
act_value_1 = gr.Markdown(init_values[0])
gr.Markdown("### ImageNet-Sketch")
top_image_2 = gr.Image(
value=init_tops[1],
type="pil",
label="ImageNet-Sketch",
show_label=False,
)
act_value_2 = gr.Markdown(init_values[1])
gr.Markdown("### Caltech101")
top_image_3 = gr.Image(
value=init_tops[2], type="pil", label="Caltech101", show_label=False
)
act_value_3 = gr.Markdown(init_values[2])
image_display.select(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=[radio_choices],
)
model_selector.change(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=[radio_choices],
)
image_selector.select(
fn=update_radio_options,
inputs=[image_selector, model_selector],
outputs=[radio_choices],
)
radio_choices.change(
fn=update_all,
inputs=[image_selector, radio_choices, toggle_btn, model_selector],
outputs=[
seg_mask_display,
seg_mask_display_maple,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
markdown_display,
markdown_display_2,
],
)
toggle_btn.change(
fn=show_activation_heatmap_clip,
inputs=[image_selector, radio_choices, toggle_btn],
outputs=[
seg_mask_display,
top_image_1,
top_image_2,
top_image_3,
act_value_1,
act_value_2,
act_value_3,
],
)
# Launch the app
# demo.queue()
# demo.launch()
# if __name__ == "__main__":
# demo.queue() # Enable queuing for better handling of concurrent users
# demo.launch(
# server_name="0.0.0.0", # Allow external access
# server_port=7860,
# share=False, # Set to True if you want to create a public URL
# show_error=True,
# # Optimize concurrency
# max_threads=8, # Adjust based on your CPU cores
# )
if __name__ == "__main__":
import psutil
# Get system memory info
mem = psutil.virtual_memory()
total_ram_gb = mem.total / (1024**3)
# Configure cache sizes based on available RAM
cache_size = int(total_ram_gb * 100) # Rough estimate: 100 entries per GB
# Precompute all data
print("Starting precomputation...")
preload_all_model_data()
precompute_activations()
precompute_segmasks()
print("Precomputation complete!")
# Memory monitoring function
def monitor_memory_usage():
"""Monitor and log memory usage"""
process = psutil.Process()
mem_info = process.memory_info()
print(f"""
Memory Usage:
- RSS: {mem_info.rss / (1024**2):.2f} MB
- VMS: {mem_info.vms / (1024**2):.2f} MB
- Cache Size: {len(_CACHE['model_data'])} entries
""")
# Start periodic monitoring
def start_memory_monitor():
threading.Timer(300.0, start_memory_monitor).start() # Every 5 minutes
monitor_memory_usage()
# Start the monitoring
import threading
start_memory_monitor()
# Launch the app with memory-optimized settings
demo.queue(max_size=min(20, int(total_ram_gb))) # Scale queue with RAM
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
max_threads=min(16, psutil.cpu_count()), # Scale threads with CPU
websocket_ping_timeout=60,
preventive_refresh=True,
memory_limit_mb=int(total_ram_gb * 1024 * 0.8) # Use up to 80% of RAM
) |