Spaces:
Sleeping
Sleeping
File size: 1,973 Bytes
5dd1ba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
import torch
from transformers import pipeline
import tempfile
# Set the Streamlit page config
st.set_page_config(page_title="Meeting Summarizer", layout="centered")
# Title
st.title("π Intelligent Meeting Summarizer")
st.write("Upload your English meeting audio, and we'll generate a professional summary for you using Hugging Face models.")
# Load ASR pipeline
@st.cache_resource
def load_asr_pipeline():
return pipeline("automatic-speech-recognition", model="facebook/s2t-medium-librispeech-asr")
# Load Text Generation pipeline
@st.cache_resource
def load_summary_pipeline():
return pipeline(
task="text-generation",
model="huggyllama/llama-7b",
torch_dtype=torch.float16,
device=0 # set to -1 for CPU
)
asr_pipeline = load_asr_pipeline()
gen_pipeline = load_summary_pipeline()
# Upload audio file
uploaded_file = st.file_uploader("π€ Upload your meeting audio (.wav)", type=["wav", "mp3", "flac"])
if uploaded_file is not None:
# Save to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio:
tmp_audio.write(uploaded_file.read())
tmp_audio_path = tmp_audio.name
st.audio(uploaded_file, format='audio/wav')
if st.button("π Transcribe and Summarize"):
# ASR: Audio to Text
with st.spinner("Transcribing audio..."):
result = asr_pipeline(tmp_audio_path)
transcription = result["text"]
st.subheader("π Transcribed Text")
st.write(transcription)
# Text to Text
with st.spinner("Generating summary..."):
prompt = f"Summarize the following meeting transcript into a professional meeting report:\n{transcription}\n\nSummary:"
summary = gen_pipeline(prompt, max_new_tokens=300, do_sample=True, top_k=50, temperature=0.7)[0]["generated_text"]
st.subheader("π§ Meeting Summary")
st.write(summary) |