Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
# Set the Streamlit page config
|
7 |
+
st.set_page_config(page_title="Meeting Summarizer", layout="centered")
|
8 |
+
|
9 |
+
# Title
|
10 |
+
st.title("π Intelligent Meeting Summarizer")
|
11 |
+
st.write("Upload your English meeting audio, and we'll generate a professional summary for you using Hugging Face models.")
|
12 |
+
|
13 |
+
# Load ASR pipeline
|
14 |
+
@st.cache_resource
|
15 |
+
def load_asr_pipeline():
|
16 |
+
return pipeline("automatic-speech-recognition", model="facebook/s2t-medium-librispeech-asr")
|
17 |
+
|
18 |
+
# Load Text Generation pipeline
|
19 |
+
@st.cache_resource
|
20 |
+
def load_summary_pipeline():
|
21 |
+
return pipeline(
|
22 |
+
task="text-generation",
|
23 |
+
model="huggyllama/llama-7b",
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
device=0 # set to -1 for CPU
|
26 |
+
)
|
27 |
+
|
28 |
+
asr_pipeline = load_asr_pipeline()
|
29 |
+
gen_pipeline = load_summary_pipeline()
|
30 |
+
|
31 |
+
# Upload audio file
|
32 |
+
uploaded_file = st.file_uploader("π€ Upload your meeting audio (.wav)", type=["wav", "mp3", "flac"])
|
33 |
+
|
34 |
+
if uploaded_file is not None:
|
35 |
+
# Save to temp file
|
36 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_audio:
|
37 |
+
tmp_audio.write(uploaded_file.read())
|
38 |
+
tmp_audio_path = tmp_audio.name
|
39 |
+
|
40 |
+
st.audio(uploaded_file, format='audio/wav')
|
41 |
+
|
42 |
+
if st.button("π Transcribe and Summarize"):
|
43 |
+
# ASR: Audio to Text
|
44 |
+
with st.spinner("Transcribing audio..."):
|
45 |
+
result = asr_pipeline(tmp_audio_path)
|
46 |
+
transcription = result["text"]
|
47 |
+
st.subheader("π Transcribed Text")
|
48 |
+
st.write(transcription)
|
49 |
+
|
50 |
+
# Text to Text
|
51 |
+
with st.spinner("Generating summary..."):
|
52 |
+
prompt = f"Summarize the following meeting transcript into a professional meeting report:\n{transcription}\n\nSummary:"
|
53 |
+
summary = gen_pipeline(prompt, max_new_tokens=300, do_sample=True, top_k=50, temperature=0.7)[0]["generated_text"]
|
54 |
+
st.subheader("π§ Meeting Summary")
|
55 |
+
st.write(summary)
|