trying to add sentence chunking
#1
by
drewThomasson
- opened
app.py
CHANGED
|
@@ -3,9 +3,10 @@ import base64
|
|
| 3 |
import time
|
| 4 |
import uuid
|
| 5 |
import shutil
|
|
|
|
| 6 |
from concurrent.futures import ThreadPoolExecutor
|
| 7 |
from pathlib import Path
|
| 8 |
-
from typing import List, Optional
|
| 9 |
import subprocess
|
| 10 |
|
| 11 |
import ebooklib
|
|
@@ -74,14 +75,99 @@ def clone_voice(audio_path: str):
|
|
| 74 |
audio_data = base64.b64encode(f.read()).decode('utf-8')
|
| 75 |
return audio_data
|
| 76 |
|
| 77 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
"""Process text and generate audio."""
|
| 79 |
log_messages = ""
|
| 80 |
if not ref_audio_files:
|
| 81 |
log_messages += "Please provide at least one reference audio!\n"
|
| 82 |
return None, log_messages
|
| 83 |
|
| 84 |
-
#
|
| 85 |
base64_voices = ref_audio_files[:5]
|
| 86 |
|
| 87 |
request = TTSRequest(
|
|
@@ -109,7 +195,7 @@ def process_text_and_generate(input_text, ref_audio_files, speed, enhance_speech
|
|
| 109 |
return None, log_messages
|
| 110 |
except Exception as e:
|
| 111 |
logger.error(f"Error: {e}")
|
| 112 |
-
log_messages += f"β An Error
|
| 113 |
return None, log_messages
|
| 114 |
|
| 115 |
def build_gradio_ui():
|
|
@@ -187,26 +273,37 @@ def build_gradio_ui():
|
|
| 187 |
generate_button = gr.Button("Generate Speech")
|
| 188 |
with gr.Column():
|
| 189 |
audio_output = gr.Audio(label="Generated Audio")
|
| 190 |
-
log_output = gr.
|
| 191 |
|
| 192 |
def process_file_and_generate(
|
| 193 |
file_input, ref_audio_files, speed, enhance_speech,
|
| 194 |
temperature, top_p, top_k, repetition_penalty, language
|
| 195 |
):
|
| 196 |
if not file_input:
|
| 197 |
-
return None, "Please provide an input file!"
|
| 198 |
|
| 199 |
try:
|
| 200 |
# Convert input file to text
|
| 201 |
input_text = text_from_file(file_input.name)
|
| 202 |
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
except Exception as e:
|
| 208 |
logger.error(f"Error processing file: {e}")
|
| 209 |
-
return None, f"Error processing file: {str(e)}"
|
| 210 |
|
| 211 |
generate_button.click(
|
| 212 |
process_file_and_generate,
|
|
@@ -229,7 +326,8 @@ def build_gradio_ui():
|
|
| 229 |
)
|
| 230 |
mic_ref_audio = gr.Audio(
|
| 231 |
label="Record Reference Audio",
|
| 232 |
-
|
|
|
|
| 233 |
)
|
| 234 |
|
| 235 |
with gr.Accordion("Advanced settings", open=False):
|
|
@@ -283,16 +381,16 @@ def build_gradio_ui():
|
|
| 283 |
generate_button_mic = gr.Button("Generate Speech")
|
| 284 |
with gr.Column():
|
| 285 |
audio_output_mic = gr.Audio(label="Generated Audio")
|
| 286 |
-
log_output_mic = gr.
|
| 287 |
|
| 288 |
def process_mic_and_generate(
|
| 289 |
file_input, mic_ref_audio, speed_mic, enhance_speech_mic,
|
| 290 |
temperature_mic, top_p_mic, top_k_mic, repetition_penalty_mic, language_mic
|
| 291 |
):
|
| 292 |
-
if
|
| 293 |
-
return None, "Please record an audio!"
|
| 294 |
if not file_input:
|
| 295 |
-
return None, "Please provide an input file!"
|
| 296 |
|
| 297 |
try:
|
| 298 |
# Convert input file to text
|
|
@@ -303,21 +401,42 @@ def build_gradio_ui():
|
|
| 303 |
hash = hashlib.sha1(data).hexdigest()[:10]
|
| 304 |
output_path = temp_dir / (f"mic_{hash}.wav")
|
| 305 |
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
torch_audio.
|
| 310 |
-
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
except Exception as e:
|
| 319 |
logger.error(f"Error processing input: {e}")
|
| 320 |
-
return None, f"Error processing input: {str(e)}"
|
| 321 |
|
| 322 |
generate_button_mic.click(
|
| 323 |
process_mic_and_generate,
|
|
@@ -333,4 +452,4 @@ def build_gradio_ui():
|
|
| 333 |
|
| 334 |
if __name__ == "__main__":
|
| 335 |
ui = build_gradio_ui()
|
| 336 |
-
ui.launch(debug=True, server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 3 |
import time
|
| 4 |
import uuid
|
| 5 |
import shutil
|
| 6 |
+
import hashlib
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
from pathlib import Path
|
| 9 |
+
from typing import List, Optional, Tuple
|
| 10 |
import subprocess
|
| 11 |
|
| 12 |
import ebooklib
|
|
|
|
| 75 |
audio_data = base64.b64encode(f.read()).decode('utf-8')
|
| 76 |
return audio_data
|
| 77 |
|
| 78 |
+
def chunk_text(text: str, max_words: int = 300) -> List[str]:
|
| 79 |
+
"""
|
| 80 |
+
Splits the input text into chunks with a maximum of `max_words` per chunk.
|
| 81 |
+
"""
|
| 82 |
+
words = text.split()
|
| 83 |
+
chunks = []
|
| 84 |
+
for i in range(0, len(words), max_words):
|
| 85 |
+
chunk = ' '.join(words[i:i + max_words])
|
| 86 |
+
chunks.append(chunk)
|
| 87 |
+
return chunks
|
| 88 |
+
|
| 89 |
+
def generate_audio_from_chunks(
|
| 90 |
+
chunks: List[str],
|
| 91 |
+
ref_audio_files: List[str],
|
| 92 |
+
speed: float,
|
| 93 |
+
enhance_speech: bool,
|
| 94 |
+
temperature: float,
|
| 95 |
+
top_p: float,
|
| 96 |
+
top_k: int,
|
| 97 |
+
repetition_penalty: float,
|
| 98 |
+
language: str
|
| 99 |
+
) -> Tuple[Optional[str], str]:
|
| 100 |
+
"""
|
| 101 |
+
Generates audio for each text chunk and combines them into a single audio file.
|
| 102 |
+
Returns the path to the combined audio file and a log message.
|
| 103 |
+
"""
|
| 104 |
+
audio_files = []
|
| 105 |
+
log_messages = ""
|
| 106 |
+
|
| 107 |
+
for idx, chunk in enumerate(chunks):
|
| 108 |
+
result, log = process_text_and_generate(
|
| 109 |
+
chunk, ref_audio_files, speed, enhance_speech, temperature,
|
| 110 |
+
top_p, top_k, repetition_penalty, language
|
| 111 |
+
)
|
| 112 |
+
if result:
|
| 113 |
+
sample_rate, audio_array = result
|
| 114 |
+
# Save audio array to temp file
|
| 115 |
+
audio_path = temp_dir / f"chunk_{uuid.uuid4().hex[:8]}_{idx}.wav"
|
| 116 |
+
audio_tensor = torch.from_numpy(audio_array)
|
| 117 |
+
torchaudio.save(str(audio_path), audio_tensor.unsqueeze(0), sample_rate)
|
| 118 |
+
audio_files.append(str(audio_path))
|
| 119 |
+
log_messages += f"β
Generated audio for chunk {idx + 1}/{len(chunks)}\n"
|
| 120 |
+
else:
|
| 121 |
+
logger.error(f"Failed to generate audio for chunk {idx}: {log}")
|
| 122 |
+
log_messages += f"β Failed to generate audio for chunk {idx + 1}: {log}\n"
|
| 123 |
+
return None, log_messages
|
| 124 |
+
|
| 125 |
+
# Create a list file for ffmpeg
|
| 126 |
+
list_file = temp_dir / f"list_{uuid.uuid4().hex[:8]}.txt"
|
| 127 |
+
with open(list_file, 'w') as f:
|
| 128 |
+
for audio_file in audio_files:
|
| 129 |
+
f.write(f"file '{audio_file}'\n")
|
| 130 |
+
|
| 131 |
+
# Define the output combined audio path
|
| 132 |
+
combined_audio_path = temp_dir / f"combined_{uuid.uuid4().hex[:8]}.wav"
|
| 133 |
+
|
| 134 |
+
try:
|
| 135 |
+
subprocess.run(
|
| 136 |
+
[
|
| 137 |
+
'ffmpeg', '-y', '-f', 'concat', '-safe', '0',
|
| 138 |
+
'-i', str(list_file),
|
| 139 |
+
'-c', 'copy',
|
| 140 |
+
str(combined_audio_path)
|
| 141 |
+
],
|
| 142 |
+
check=True,
|
| 143 |
+
capture_output=True,
|
| 144 |
+
text=True
|
| 145 |
+
)
|
| 146 |
+
log_messages += "β
Successfully combined all audio chunks."
|
| 147 |
+
return str(combined_audio_path), log_messages
|
| 148 |
+
except subprocess.CalledProcessError as e:
|
| 149 |
+
logger.error(f"Failed to combine audio files: {e.stderr}")
|
| 150 |
+
log_messages += f"β Failed to combine audio files: {e.stderr}"
|
| 151 |
+
return None, log_messages
|
| 152 |
+
|
| 153 |
+
def process_text_and_generate(
|
| 154 |
+
input_text: str,
|
| 155 |
+
ref_audio_files: List[str],
|
| 156 |
+
speed: float,
|
| 157 |
+
enhance_speech: bool,
|
| 158 |
+
temperature: float,
|
| 159 |
+
top_p: float,
|
| 160 |
+
top_k: int,
|
| 161 |
+
repetition_penalty: float,
|
| 162 |
+
language: str
|
| 163 |
+
) -> Tuple[Optional[Tuple[int, np.ndarray]], str]:
|
| 164 |
"""Process text and generate audio."""
|
| 165 |
log_messages = ""
|
| 166 |
if not ref_audio_files:
|
| 167 |
log_messages += "Please provide at least one reference audio!\n"
|
| 168 |
return None, log_messages
|
| 169 |
|
| 170 |
+
# Clone voices from all file paths (shorten them)
|
| 171 |
base64_voices = ref_audio_files[:5]
|
| 172 |
|
| 173 |
request = TTSRequest(
|
|
|
|
| 195 |
return None, log_messages
|
| 196 |
except Exception as e:
|
| 197 |
logger.error(f"Error: {e}")
|
| 198 |
+
log_messages += f"β An Error occurred: {e}\n"
|
| 199 |
return None, log_messages
|
| 200 |
|
| 201 |
def build_gradio_ui():
|
|
|
|
| 273 |
generate_button = gr.Button("Generate Speech")
|
| 274 |
with gr.Column():
|
| 275 |
audio_output = gr.Audio(label="Generated Audio")
|
| 276 |
+
log_output = gr.Textbox(label="Log Output", lines=10)
|
| 277 |
|
| 278 |
def process_file_and_generate(
|
| 279 |
file_input, ref_audio_files, speed, enhance_speech,
|
| 280 |
temperature, top_p, top_k, repetition_penalty, language
|
| 281 |
):
|
| 282 |
if not file_input:
|
| 283 |
+
return None, "β Please provide an input file!"
|
| 284 |
|
| 285 |
try:
|
| 286 |
# Convert input file to text
|
| 287 |
input_text = text_from_file(file_input.name)
|
| 288 |
|
| 289 |
+
# Chunk the text
|
| 290 |
+
chunks = chunk_text(input_text, max_words=300)
|
| 291 |
+
|
| 292 |
+
# Generate audio from chunks and combine
|
| 293 |
+
combined_audio_path, log = generate_audio_from_chunks(
|
| 294 |
+
chunks, ref_audio_files, speed, enhance_speech, temperature, top_p,
|
| 295 |
+
top_k, repetition_penalty, language
|
| 296 |
)
|
| 297 |
+
|
| 298 |
+
if combined_audio_path:
|
| 299 |
+
# Read the combined audio file to return as audio output
|
| 300 |
+
waveform, sr = torchaudio.load(combined_audio_path)
|
| 301 |
+
return (sr, waveform.numpy()), log
|
| 302 |
+
else:
|
| 303 |
+
return None, log
|
| 304 |
except Exception as e:
|
| 305 |
logger.error(f"Error processing file: {e}")
|
| 306 |
+
return None, f"β Error processing file: {str(e)}"
|
| 307 |
|
| 308 |
generate_button.click(
|
| 309 |
process_file_and_generate,
|
|
|
|
| 326 |
)
|
| 327 |
mic_ref_audio = gr.Audio(
|
| 328 |
label="Record Reference Audio",
|
| 329 |
+
source="microphone",
|
| 330 |
+
type="numpy"
|
| 331 |
)
|
| 332 |
|
| 333 |
with gr.Accordion("Advanced settings", open=False):
|
|
|
|
| 381 |
generate_button_mic = gr.Button("Generate Speech")
|
| 382 |
with gr.Column():
|
| 383 |
audio_output_mic = gr.Audio(label="Generated Audio")
|
| 384 |
+
log_output_mic = gr.Textbox(label="Log Output", lines=10)
|
| 385 |
|
| 386 |
def process_mic_and_generate(
|
| 387 |
file_input, mic_ref_audio, speed_mic, enhance_speech_mic,
|
| 388 |
temperature_mic, top_p_mic, top_k_mic, repetition_penalty_mic, language_mic
|
| 389 |
):
|
| 390 |
+
if mic_ref_audio is None:
|
| 391 |
+
return None, "β Please record an audio!"
|
| 392 |
if not file_input:
|
| 393 |
+
return None, "β Please provide an input file!"
|
| 394 |
|
| 395 |
try:
|
| 396 |
# Convert input file to text
|
|
|
|
| 401 |
hash = hashlib.sha1(data).hexdigest()[:10]
|
| 402 |
output_path = temp_dir / (f"mic_{hash}.wav")
|
| 403 |
|
| 404 |
+
# Ensure mic_ref_audio is in the correct format
|
| 405 |
+
if isinstance(mic_ref_audio, tuple):
|
| 406 |
+
mic_waveform, mic_sr = mic_ref_audio
|
| 407 |
+
torch_audio = torch.from_numpy(mic_waveform.astype(float))
|
| 408 |
+
torchaudio.save(
|
| 409 |
+
str(output_path),
|
| 410 |
+
torch_audio.unsqueeze(0),
|
| 411 |
+
mic_sr
|
| 412 |
+
)
|
| 413 |
+
else:
|
| 414 |
+
# If mic_ref_audio is not a tuple, handle accordingly
|
| 415 |
+
logger.error("Invalid microphone audio format.")
|
| 416 |
+
return None, "β Invalid microphone audio format."
|
| 417 |
+
|
| 418 |
+
# Clone voice from the saved mic audio
|
| 419 |
+
ref_audio_files = [str(output_path)]
|
| 420 |
|
| 421 |
+
# Chunk the text
|
| 422 |
+
chunks = chunk_text(input_text, max_words=300)
|
| 423 |
+
|
| 424 |
+
# Generate audio from chunks and combine
|
| 425 |
+
combined_audio_path, log = generate_audio_from_chunks(
|
| 426 |
+
chunks, ref_audio_files, speed_mic, enhance_speech_mic,
|
| 427 |
+
temperature_mic, top_p_mic, top_k_mic, repetition_penalty_mic,
|
| 428 |
+
language_mic
|
| 429 |
)
|
| 430 |
+
|
| 431 |
+
if combined_audio_path:
|
| 432 |
+
# Read the combined audio file to return as audio output
|
| 433 |
+
waveform, sr = torchaudio.load(combined_audio_path)
|
| 434 |
+
return (sr, waveform.numpy()), log
|
| 435 |
+
else:
|
| 436 |
+
return None, log
|
| 437 |
except Exception as e:
|
| 438 |
logger.error(f"Error processing input: {e}")
|
| 439 |
+
return None, f"β Error processing input: {str(e)}"
|
| 440 |
|
| 441 |
generate_button_mic.click(
|
| 442 |
process_mic_and_generate,
|
|
|
|
| 452 |
|
| 453 |
if __name__ == "__main__":
|
| 454 |
ui = build_gradio_ui()
|
| 455 |
+
ui.launch(debug=True, server_name="0.0.0.0", server_port=7860)
|