Spaces:
Sleeping
Sleeping
Create report.py
#3
by
hou12q
- opened
- src/report.py +120 -0
src/report.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
from pathlib import Path
|
4 |
+
@dataclass
|
5 |
+
class Task:
|
6 |
+
benchmark: str
|
7 |
+
metric: str
|
8 |
+
col_name: str
|
9 |
+
REPORT_MD_PATH = Path(__file__).parent.parent / "Files" / "report.md"
|
10 |
+
with open(REPORT_MD_PATH, "r", encoding="utf-8") as f:
|
11 |
+
REPORT_TEXT = f.read()
|
12 |
+
|
13 |
+
TITLE = "# LLM Benchmark Leaderboard"
|
14 |
+
|
15 |
+
# 替换LLM_BENCHMARKS_TEXT为report.md内容
|
16 |
+
LLM_BENCHMARKS_TEXT = REPORT_TEXT
|
17 |
+
|
18 |
+
CITATION_BUTTON_LABEL = "📖 Citation"
|
19 |
+
CITATION_BUTTON_TEXT = """If you use this benchmark, please cite: ...
|
20 |
+
(原citation内容保留)"""
|
21 |
+
|
22 |
+
EVALUATION_QUEUE_TEXT = "Models submitted for evaluation will appear here."
|
23 |
+
|
24 |
+
|
25 |
+
# Select your tasks here
|
26 |
+
# ---------------------------------------------------
|
27 |
+
class Tasks(Enum):
|
28 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
29 |
+
task0 = Task("anli_r1", "acc", "ANLI")
|
30 |
+
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
31 |
+
|
32 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
33 |
+
# ---------------------------------------------------
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
# Your leaderboard name
|
38 |
+
TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
|
39 |
+
|
40 |
+
# What does your leaderboard evaluate?
|
41 |
+
INTRODUCTION_TEXT = """
|
42 |
+
Intro text
|
43 |
+
"""
|
44 |
+
|
45 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
46 |
+
LLM_BENCHMARKS_TEXT = f"""
|
47 |
+
## How it works
|
48 |
+
|
49 |
+
## Reproducibility
|
50 |
+
To reproduce our results, here is the commands you can run:
|
51 |
+
|
52 |
+
"""
|
53 |
+
|
54 |
+
EVALUATION_QUEUE_TEXT = """
|
55 |
+
## Some good practices before submitting a model
|
56 |
+
|
57 |
+
### 1) Make sure you can load your model and tokenizer using AutoClasses:
|
58 |
+
```python
|
59 |
+
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
60 |
+
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
61 |
+
model = AutoModel.from_pretrained("your model name", revision=revision)
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
63 |
+
```
|
64 |
+
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
65 |
+
|
66 |
+
Note: make sure your model is public!
|
67 |
+
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
68 |
+
|
69 |
+
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
70 |
+
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
71 |
+
|
72 |
+
### 3) Make sure your model has an open license!
|
73 |
+
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
74 |
+
|
75 |
+
### 4) Fill up your model card
|
76 |
+
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
77 |
+
|
78 |
+
## In case of model failure
|
79 |
+
If your model is displayed in the `FAILED` category, its execution stopped.
|
80 |
+
Make sure you have followed the above steps first.
|
81 |
+
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
82 |
+
"""
|
83 |
+
|
84 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
85 |
+
CITATION_BUTTON_TEXT = r"""
|
86 |
+
"""
|
87 |
+
# Report
|
88 |
+
|
89 |
+
## 1. 模型及类别选择
|
90 |
+
|
91 |
+
本次实验选用了三类大模型:Llama 3, Mistral 7B, ChatGPT。
|
92 |
+
|
93 |
+
- **Llama 3**:开源社区广泛使用,适合中英文任务。
|
94 |
+
- **Mistral 7B**:轻量级,适合边缘设备。
|
95 |
+
- **ChatGPT**:闭源,适合通用对话任务,表现最优。
|
96 |
+
|
97 |
+
| 模型名称 | 参数量 | 开源情况 | 主要用途 |
|
98 |
+
|------------|--------|---------|----------------|
|
99 |
+
| Llama 3 | 70B | 是 | 多语言任务 |
|
100 |
+
| Mistral 7B | 7B | 是 | 低功耗推理任务 |
|
101 |
+
| ChatGPT | 未公开 | 否 | 通用对话、推理任务 |
|
102 |
+
|
103 |
+
**选择理由**:
|
104 |
+
- Llama 3和Mistral为开源,方便定制与修改;
|
105 |
+
- ChatGPT性能优越,作为基准。
|
106 |
+
|
107 |
+
---
|
108 |
+
|
109 |
+
## 2. 系统实现细节
|
110 |
+
|
111 |
+
### Gradio交互界面截图
|
112 |
+

|
113 |
+
|
114 |
+
### 输入与输出流程图
|
115 |
+
```mermaid
|
116 |
+
graph TD
|
117 |
+
A[用户输入] --> B[Gradio界面]
|
118 |
+
B --> C[模型推理]
|
119 |
+
C --> D[返回结果]
|
120 |
+
|