Spaces:
Sleeping
Sleeping
ddd
#1
by
dongwook-chan
- opened
app.py
CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
from transformers import pipeline, AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
-
import gradio as gr
|
6 |
|
7 |
#Note this should be used always in compliance with applicable laws and regulations if used with real patient data.
|
8 |
|
@@ -16,7 +15,8 @@ peft_config = PeftConfig.from_pretrained("pseudolab/K23_MiniMed")
|
|
16 |
peft_model = MistralForCausalLM.from_pretrained("pseudolab/K23_MiniMed", trust_remote_code=True)
|
17 |
peft_model = PeftModel.from_pretrained(peft_model, "pseudolab/K23_MiniMed")
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
# Prepare the context
|
22 |
def prepare_context(data):
|
@@ -24,25 +24,23 @@ def prepare_context(data):
|
|
24 |
data_str = data.to_string(index=False, header=False)
|
25 |
|
26 |
# Tokenize the data
|
27 |
-
|
28 |
|
29 |
# Truncate the input if it's too long for the model
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
input_ids = data_str
|
34 |
|
35 |
return input_ids
|
36 |
|
37 |
-
|
38 |
data = pd.read_csv(uploaded_file)
|
39 |
-
|
40 |
|
41 |
# Generate text based on the context
|
42 |
context = prepare_context(data)
|
43 |
-
|
44 |
-
generated_text
|
45 |
-
ret += generated_text
|
46 |
|
47 |
# Internally prompt the model to data analyze the EHR patient data
|
48 |
prompt = "You are an Electronic Health Records analyst with nursing school training. Please analyze patient data that you are provided here. Give an organized, step-by-step, formatted health records analysis. You will always be truthful and if you do nont know the answer say you do not know."
|
@@ -52,15 +50,10 @@ def fn(uploaded_file) -> str:
|
|
52 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
53 |
|
54 |
# Generate text based on the prompt
|
55 |
-
|
56 |
-
generated_text
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
demo = gr.Interface(fn=fn, inputs="file", outputs="text", theme="pseudolab/huggingface-korea-theme")
|
63 |
-
|
64 |
-
|
65 |
-
if __name__ == "__main__":
|
66 |
-
demo.launch(show_api=False)
|
|
|
2 |
import pandas as pd
|
3 |
from transformers import pipeline, AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
4 |
from peft import PeftModel, PeftConfig
|
|
|
5 |
|
6 |
#Note this should be used always in compliance with applicable laws and regulations if used with real patient data.
|
7 |
|
|
|
15 |
peft_model = MistralForCausalLM.from_pretrained("pseudolab/K23_MiniMed", trust_remote_code=True)
|
16 |
peft_model = PeftModel.from_pretrained(peft_model, "pseudolab/K23_MiniMed")
|
17 |
|
18 |
+
#Upload Patient Data
|
19 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
20 |
|
21 |
# Prepare the context
|
22 |
def prepare_context(data):
|
|
|
24 |
data_str = data.to_string(index=False, header=False)
|
25 |
|
26 |
# Tokenize the data
|
27 |
+
input_ids = tokenizer.encode(data_str, return_tensors="pt")
|
28 |
|
29 |
# Truncate the input if it's too long for the model
|
30 |
+
max_length = tokenizer.model_max_length
|
31 |
+
if input_ids.shape[1] > max_length:
|
32 |
+
input_ids = input_ids[:, :max_length]
|
|
|
33 |
|
34 |
return input_ids
|
35 |
|
36 |
+
if uploaded_file is not None:
|
37 |
data = pd.read_csv(uploaded_file)
|
38 |
+
st.write(data)
|
39 |
|
40 |
# Generate text based on the context
|
41 |
context = prepare_context(data)
|
42 |
+
generated_text = pipeline('text-generation', model=model)(context)[0]['generated_text']
|
43 |
+
st.write(generated_text)
|
|
|
44 |
|
45 |
# Internally prompt the model to data analyze the EHR patient data
|
46 |
prompt = "You are an Electronic Health Records analyst with nursing school training. Please analyze patient data that you are provided here. Give an organized, step-by-step, formatted health records analysis. You will always be truthful and if you do nont know the answer say you do not know."
|
|
|
50 |
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
51 |
|
52 |
# Generate text based on the prompt
|
53 |
+
generated_text = pipeline('text-generation', model=model)(input_ids=input_ids)[0]['generated_text']
|
54 |
+
st.write(generated_text)
|
55 |
+
else:
|
56 |
+
st.write("Please enter patient data")
|
57 |
+
|
58 |
+
else:
|
59 |
+
st.write("No file uploaded")
|
|
|
|
|
|
|
|
|
|