File size: 5,869 Bytes
5fa4369
05b8101
10e9b7d
61c2ff2
4097d7c
6a52f23
86df5d9
da7bb4a
d5ffeee
1381703
da7bb4a
0b67c77
da7bb4a
c27f94c
 
d5ffeee
 
 
 
 
 
 
 
 
 
 
 
 
3635d36
abf0257
8fd0023
da7bb4a
7cfb3a2
 
da7bb4a
 
 
 
 
 
 
 
 
 
 
d5ffeee
 
9715e6d
 
 
d5ffeee
da7bb4a
 
 
 
 
 
86df5d9
 
da7bb4a
7cfb3a2
060e212
7cfb3a2
0b67c77
7cfb3a2
 
 
84f178b
61c2ff2
84f178b
 
4856d2b
7cfb3a2
 
 
 
61c2ff2
6a52f23
7cfb3a2
 
 
6a52f23
7cfb3a2
bc758d9
7cfb3a2
 
84f178b
7cfb3a2
ef65c0f
7cfb3a2
 
6a52f23
 
da7bb4a
 
 
6a52f23
84f178b
 
 
932b4d5
84f178b
61c2ff2
7cfb3a2
84f178b
61c2ff2
c27f94c
84f178b
 
c27f94c
 
 
9e16e60
7cfb3a2
 
 
 
 
 
84f178b
7cfb3a2
 
9e16e60
84f178b
9e16e60
84f178b
9ccf47b
86df5d9
9e16e60
 
46eabca
c27f94c
84f178b
 
da7bb4a
46eabca
7cfb3a2
 
61c2ff2
84f178b
 
9e16e60
da7bb4a
9e16e60
 
a11972f
7cfb3a2
61c2ff2
6a52f23
c0eb33d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


import os
import gradio as gr
import requests
import pandas as pd

from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool
from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server

# System prompt for the agent
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
If you're asked for a number, don’t use commas or units like $ or %, unless specified.
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise.

Tool Use Guidelines:
1. Do **not** use any tools outside of the provided tools list.
2. Always use **only one tool at a time** in each step of your execution.
3. If the question refers to a `.py` file or uploaded Python script, use **RunPythonFileTool** to execute it and base your answer on its output.
4. If the question looks reversed (starts with a period or reads backward), first use **ReverseTextTool** to reverse it, then process the question.
5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using **ReverseTextTool**.
6. When dealing with Excel files, prioritize using the **excel** tool over writing code in **terminal-controller**.
7. If you need to download a file, always use the **download_server** tool and save it to the correct path.
8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools.
9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible.
"""

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Agent wrapper using LiteLLMModel
class MyAgent:
    def __init__(self):
        gemini_api_key = os.getenv("GEMINI_API_KEY")
        if not gemini_api_key:
            raise ValueError("GEMINI_API_KEY not set in environment variables.")
        
        self.model = LiteLLMModel(
            model_id="gemini/gemini-2.0-flash-lite",
            api_key=gemini_api_key,
            system_prompt=SYSTEM_PROMPT
        )
        
        self.agent = CodeAgent(
            tools=[
                DuckDuckGoSearchTool(),
                ReverseTextTool,
                RunPythonFileTool,
                download_server
            ],
            model=self.model,
            add_base_tools=True,
        )

    def __call__(self, question: str) -> str:
        return self.agent.run(question)

# Main evaluation function
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please login to Hugging Face.", None

    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"

    try:
        agent = MyAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        return "Agent did not return any answers.", pd.DataFrame(results_log)

    submission_data = {
        "username": profile.username.strip(),
        "agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission failed: {e}", pd.DataFrame(results_log)

# Gradio UI setup
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
    **Instructions:**
    1. Clone this space and configure your Gemini API key.
    2. Log in to Hugging Face.
    3. Run your agent on evaluation tasks and submit answers.
    """)

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Results", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("🔧 App starting...")
    demo.launch(debug=True, share=False)