Spaces:
Runtime error
Runtime error
File size: 5,277 Bytes
42ea09a f693573 0b39b7d 42ea09a acc3763 42ea09a acc3763 42ea09a 3e6963e aa2d466 42ea09a aa2d466 42ea09a aa2d466 42ea09a aa2d466 42ea09a aa2d466 0b39b7d 42ea09a f693573 42ea09a aa2d466 42ea09a f693573 42ea09a aa2d466 42ea09a aa2d466 42ea09a aa2d466 ac9a66d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from __future__ import annotations
import math
import random
import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionPipeline
help_text = """
"""
example_instructions = [
"A river"
]
model_id = "dimentox/heightmapstyle"
def main():
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
# example_image = Image.open("imgs/example.jpg").convert("RGB")
def load_example(
steps: int,
randomize_seed: bool,
seed: int,
randomize_cfg: bool,
text_cfg_scale: float,
image_cfg_scale: float,
):
example_instruction = random.choice(example_instructions)
return [example_instruction] + generate(
example_instruction,
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
)
def generate(
instruction: str,
steps: int,
randomize_seed: bool,
seed: int,
randomize_cfg: bool,
text_cfg_scale: float,
image_cfg_scale: float,
):
seed = random.randint(0, 100000) if randomize_seed else seed
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
# width, height = input_image.size
# factor = 512 / max(width, height)
# factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
# width = int((width * factor) // 64) * 64
# height = int((height * factor) // 64) * 64
# input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
if instruction == "":
return [seed]
generator = torch.manual_seed(seed)
edited_image = pipe(
instruction,
guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
num_inference_steps=steps, generator=generator,
).images[0]
return [seed, text_cfg_scale, image_cfg_scale, edited_image]
def reset():
return [0, "Randomize Seed", 1371, "Fix CFG", 7.5, 1.5, None]
with gr.Blocks() as demo:
gr.HTML("""
""")
with gr.Row():
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate")
with gr.Column(scale=1, min_width=100):
load_button = gr.Button("Load Example")
with gr.Column(scale=1, min_width=100):
reset_button = gr.Button("Reset")
with gr.Column(scale=3):
instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
with gr.Row():
edited_image = gr.Image(label=f"Edited Image", type="pil", interactive=False)
edited_image.style(height=512, width=512)
with gr.Row():
steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
value="Randomize Seed",
type="index",
show_label=False,
interactive=True,
)
seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
randomize_cfg = gr.Radio(
["Fix CFG", "Randomize CFG"],
value="Fix CFG",
type="index",
show_label=False,
interactive=True,
)
text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)
gr.Markdown(help_text)
load_button.click(
fn=load_example,
inputs=[
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
],
outputs=[instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
)
generate_button.click(
fn=generate,
inputs=[
instruction,
steps,
randomize_seed,
seed,
randomize_cfg,
text_cfg_scale,
image_cfg_scale,
],
outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
)
reset_button.click(
fn=reset,
inputs=[],
outputs=[steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, edited_image],
)
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main()
import gradio as gr
gr.Examples(
[["heightmapsstyle", "a lake with a river"],
["heightmapsstyle", "greyscale", "a river running though flat planes"]],
[txt, txt_2],
cache_examples=True,
)
gr.load().launch()
# sr_b64 = super_resolution(hmap_b64)
|