File size: 5,277 Bytes
42ea09a
 
f693573
 
 
0b39b7d
42ea09a
 
acc3763
42ea09a
 
 
 
 
 
 
 
acc3763
42ea09a
 
 
3e6963e
aa2d466
 
42ea09a
 
aa2d466
 
 
 
 
 
42ea09a
 
 
 
 
 
 
 
 
 
 
 
 
aa2d466
 
 
 
 
 
 
42ea09a
 
 
 
 
aa2d466
 
 
 
 
 
42ea09a
 
aa2d466
0b39b7d
42ea09a
 
f693573
42ea09a
 
 
 
 
 
 
 
 
 
aa2d466
42ea09a
 
 
 
 
 
 
 
 
 
f693573
 
 
 
 
42ea09a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa2d466
42ea09a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa2d466
42ea09a
aa2d466
 
 
 
 
 
ac9a66d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from __future__ import annotations

import math
import random

import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionPipeline

help_text = """
"""

example_instructions = [
    "A river"
]

model_id = "dimentox/heightmapstyle"


def main():
    pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)

    # example_image = Image.open("imgs/example.jpg").convert("RGB")

    def load_example(
            steps: int,
            randomize_seed: bool,
            seed: int,
            randomize_cfg: bool,
            text_cfg_scale: float,
            image_cfg_scale: float,
    ):
        example_instruction = random.choice(example_instructions)
        return [example_instruction] + generate(
            example_instruction,
            steps,
            randomize_seed,
            seed,
            randomize_cfg,
            text_cfg_scale,
            image_cfg_scale,
        )

    def generate(
            instruction: str,
            steps: int,
            randomize_seed: bool,
            seed: int,
            randomize_cfg: bool,
            text_cfg_scale: float,
            image_cfg_scale: float,
    ):
        seed = random.randint(0, 100000) if randomize_seed else seed
        text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
        image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale

        # width, height = input_image.size
        # factor = 512 / max(width, height)
        # factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
        # width = int((width * factor) // 64) * 64
        # height = int((height * factor) // 64) * 64
        # input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)

        if instruction == "":
            return [seed]

        generator = torch.manual_seed(seed)
        edited_image = pipe(
            instruction,
            guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
            num_inference_steps=steps, generator=generator,
        ).images[0]
        return [seed, text_cfg_scale, image_cfg_scale, edited_image]

    def reset():
        return [0, "Randomize Seed", 1371, "Fix CFG", 7.5, 1.5, None]

    with gr.Blocks() as demo:
        gr.HTML("""

        """)
        with gr.Row():
            with gr.Column(scale=1, min_width=100):
                generate_button = gr.Button("Generate")
            with gr.Column(scale=1, min_width=100):
                load_button = gr.Button("Load Example")
            with gr.Column(scale=1, min_width=100):
                reset_button = gr.Button("Reset")
            with gr.Column(scale=3):
                instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
        with gr.Row():
            
            edited_image = gr.Image(label=f"Edited Image", type="pil", interactive=False)
         
            edited_image.style(height=512, width=512)
        with gr.Row():
            steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
            randomize_seed = gr.Radio(
                ["Fix Seed", "Randomize Seed"],
                value="Randomize Seed",
                type="index",
                show_label=False,
                interactive=True,
            )
            seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
            randomize_cfg = gr.Radio(
                ["Fix CFG", "Randomize CFG"],
                value="Fix CFG",
                type="index",
                show_label=False,
                interactive=True,
            )
            text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
            image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)

        gr.Markdown(help_text)

        load_button.click(
            fn=load_example,
            inputs=[
                steps,
                randomize_seed,
                seed,
                randomize_cfg,
                text_cfg_scale,
                image_cfg_scale,
            ],
            outputs=[instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
        )
        generate_button.click(
            fn=generate,
            inputs=[
                instruction,
                steps,
                randomize_seed,
                seed,
                randomize_cfg,
                text_cfg_scale,
                image_cfg_scale,
            ],
            outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
        )
        reset_button.click(
            fn=reset,
            inputs=[],
            outputs=[steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, edited_image],
        )

    demo.queue(concurrency_count=1)
    demo.launch(share=False)


if __name__ == "__main__":
    main()

import gradio as gr

gr.Examples(
    [["heightmapsstyle", "a lake with a river"],
     ["heightmapsstyle", "greyscale", "a river running though flat planes"]],
    [txt, txt_2],
    cache_examples=True,
)
gr.load().launch()



# sr_b64 = super_resolution(hmap_b64)