Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,27 @@
|
|
1 |
from __future__ import annotations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import math
|
4 |
import random
|
@@ -8,12 +31,9 @@ import torch
|
|
8 |
from PIL import Image, ImageOps
|
9 |
from diffusers import StableDiffusionPipeline
|
10 |
|
11 |
-
|
12 |
help_text = """
|
13 |
-
|
14 |
"""
|
15 |
|
16 |
-
|
17 |
example_instructions = [
|
18 |
"A river"
|
19 |
]
|
@@ -23,15 +43,16 @@ model_id = "dimentox/heightmapstyle"
|
|
23 |
|
24 |
def main():
|
25 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
|
26 |
-
|
|
|
27 |
|
28 |
def load_example(
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
):
|
36 |
example_instruction = random.choice(example_instructions)
|
37 |
return [example_instruction] + generate(
|
@@ -45,27 +66,27 @@ def main():
|
|
45 |
)
|
46 |
|
47 |
def generate(
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
):
|
56 |
seed = random.randint(0, 100000) if randomize_seed else seed
|
57 |
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
|
58 |
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
|
59 |
|
60 |
-
width, height = input_image.size
|
61 |
-
factor = 512 / max(width, height)
|
62 |
-
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
63 |
-
width = int((width * factor) // 64) * 64
|
64 |
-
height = int((height * factor) // 64) * 64
|
65 |
-
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
|
66 |
|
67 |
if instruction == "":
|
68 |
-
return [
|
69 |
|
70 |
generator = torch.manual_seed(seed)
|
71 |
edited_image = pipe(
|
@@ -80,7 +101,7 @@ def main():
|
|
80 |
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.HTML("""
|
83 |
-
|
84 |
""")
|
85 |
with gr.Row():
|
86 |
with gr.Column(scale=1, min_width=100):
|
@@ -92,7 +113,6 @@ def main():
|
|
92 |
with gr.Column(scale=3):
|
93 |
instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
|
94 |
|
95 |
-
|
96 |
with gr.Row():
|
97 |
steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
|
98 |
randomize_seed = gr.Radio(
|
@@ -125,7 +145,7 @@ def main():
|
|
125 |
text_cfg_scale,
|
126 |
image_cfg_scale,
|
127 |
],
|
128 |
-
outputs=[
|
129 |
)
|
130 |
generate_button.click(
|
131 |
fn=generate,
|
@@ -154,12 +174,12 @@ def main():
|
|
154 |
if __name__ == "__main__":
|
155 |
main()
|
156 |
|
157 |
-
|
158 |
-
|
159 |
import gradio as gr
|
|
|
160 |
gr.Examples(
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
1 |
from __future__ import annotations
|
2 |
+
import os
|
3 |
+
import zipfile
|
4 |
+
from os.path import basename
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import matplotlib
|
9 |
+
|
10 |
+
from pipeline import Model_GAN, noise
|
11 |
+
|
12 |
+
matplotlib.use('Agg')
|
13 |
+
from math import floor
|
14 |
+
from io import BytesIO
|
15 |
+
import base64
|
16 |
+
import tempfile
|
17 |
+
|
18 |
+
from keras.layers import Conv2D, LeakyReLU, BatchNormalization, Dense, AveragePooling2D, GaussianNoise
|
19 |
+
from keras.layers import Reshape, UpSampling2D, Activation, Dropout, Flatten, Conv2DTranspose
|
20 |
+
from keras.models import model_from_json, Sequential
|
21 |
+
from keras.optimizers import Adam
|
22 |
+
|
23 |
+
import cv2
|
24 |
+
|
25 |
|
26 |
import math
|
27 |
import random
|
|
|
31 |
from PIL import Image, ImageOps
|
32 |
from diffusers import StableDiffusionPipeline
|
33 |
|
|
|
34 |
help_text = """
|
|
|
35 |
"""
|
36 |
|
|
|
37 |
example_instructions = [
|
38 |
"A river"
|
39 |
]
|
|
|
43 |
|
44 |
def main():
|
45 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
|
46 |
+
|
47 |
+
# example_image = Image.open("imgs/example.jpg").convert("RGB")
|
48 |
|
49 |
def load_example(
|
50 |
+
steps: int,
|
51 |
+
randomize_seed: bool,
|
52 |
+
seed: int,
|
53 |
+
randomize_cfg: bool,
|
54 |
+
text_cfg_scale: float,
|
55 |
+
image_cfg_scale: float,
|
56 |
):
|
57 |
example_instruction = random.choice(example_instructions)
|
58 |
return [example_instruction] + generate(
|
|
|
66 |
)
|
67 |
|
68 |
def generate(
|
69 |
+
instruction: str,
|
70 |
+
steps: int,
|
71 |
+
randomize_seed: bool,
|
72 |
+
seed: int,
|
73 |
+
randomize_cfg: bool,
|
74 |
+
text_cfg_scale: float,
|
75 |
+
image_cfg_scale: float,
|
76 |
):
|
77 |
seed = random.randint(0, 100000) if randomize_seed else seed
|
78 |
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
|
79 |
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
|
80 |
|
81 |
+
# width, height = input_image.size
|
82 |
+
# factor = 512 / max(width, height)
|
83 |
+
# factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
84 |
+
# width = int((width * factor) // 64) * 64
|
85 |
+
# height = int((height * factor) // 64) * 64
|
86 |
+
# input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
|
87 |
|
88 |
if instruction == "":
|
89 |
+
return [seed]
|
90 |
|
91 |
generator = torch.manual_seed(seed)
|
92 |
edited_image = pipe(
|
|
|
101 |
|
102 |
with gr.Blocks() as demo:
|
103 |
gr.HTML("""
|
104 |
+
|
105 |
""")
|
106 |
with gr.Row():
|
107 |
with gr.Column(scale=1, min_width=100):
|
|
|
113 |
with gr.Column(scale=3):
|
114 |
instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
|
115 |
|
|
|
116 |
with gr.Row():
|
117 |
steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
|
118 |
randomize_seed = gr.Radio(
|
|
|
145 |
text_cfg_scale,
|
146 |
image_cfg_scale,
|
147 |
],
|
148 |
+
outputs=[instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
|
149 |
)
|
150 |
generate_button.click(
|
151 |
fn=generate,
|
|
|
174 |
if __name__ == "__main__":
|
175 |
main()
|
176 |
|
|
|
|
|
177 |
import gradio as gr
|
178 |
+
|
179 |
gr.Examples(
|
180 |
+
[["heightmapsstyle", "a lake with a river"],
|
181 |
+
["heightmapsstyle", "greyscale", "a river running though flat planes"]],
|
182 |
+
[txt, txt_2],
|
183 |
+
cache_examples=True,
|
184 |
+
)
|
185 |
+
gr.load().launch()
|